Proceedings

2012 IEEE 8th International Conference
on
Intelligent Computer Communication and Processing

Cluj-Napoca, Romania
August 30 - September 1, 2012

Edited by
Ioan Alfred Letia
Steering Committee
- Vladimir-Ioan Crețu, Politehnica University of Timisoara, Romania
- Darius Gavrila, University of Amsterdam, Netherlands
- Marie-Pierre Gleizes, Université Paul Sabatier, France
- Zhencheng Hu, Kumamoto University, Japan
- Ioan Ignat, Technical University of Cluj-Napoca, Romania
- Ioan Alfred Letia, Technical University of Cluj-Napoca, Romania
- Traian Muntean, University of the Mediterranean, France
- Sergiu Nedevschi, Technical University of Cluj-Napoca, Romania
- David Robertson, Edinburgh University, UK
- Andrzej Skowron, Warsaw University, Poland
- Nicolae Tapus, Politehnica University of Bucharest, Romania

Honorary Chair
- Mircea Petrescu, Romanian Academy and "Politehnica" University of Bucharest, Romania

Conference Chair
- Sergiu Nedevschi, Technical University of Cluj-Napoca, Romania

Program Committee Chair
- Ioan Alfred Letia, Technical University of Cluj-Napoca, Romania

Organizing Committee Chair
- Rodica Potolea, Technical University of Cluj-Napoca, Romania

HiPerGRID Session Chairs
- Valentin Cristea, "Politehnica" University of Bucharest, Romania
- Adina Magda Florea, "Politehnica" University of Bucharest, Romania
- Nicolae Tapus, "Politehnica" University of Bucharest, Romania
Program Committee

- Zoltan Baruch, Technical University of Cluj-Napoca, Romania
- Ladislau Boloni, University of Central Florida, USA
- Emil Stefan Chifu, Technical University of Cluj-Napoca, Romania
- Valentin Cristea, "Politehnica" University, Bucharest, Romania
- Vasile Teodor Dadarlat, Technical University of Cluj-Napoca, Romania
- Radu Danescu, Technical University of Cluj-Napoca, Romania
- Robert Dollinger, University of Wisconsin, USA
- Adina Magda Florea, "Politehnica" University, Bucharest, Romania
- Dorian Gorgan, Technical University of Cluj-Napoca, Romania
- Adrian Groza, Technical University of Cluj-Napoca, Romania
- Matti Kutila, VTT Research, Finland
- Radu Marinescu, "Politehnica" University of Timisoara, Romania
- Tiberiu Marita, Technical University of Cluj-Napoca, Romania
- Sergiu Nedevschi, Technical University of Cluj-Napoca, Romania
- Marek Paralić, Technical University of Košice, Košice, Slovakia
- Florin Pop, "Politehnica" University, Bucharest, Romania
- Ioan Salomic, Technical University of Cluj-Napoca, Romania
- Angel D. Sappa, Universitat Autonoma de Barcelona, Spain
- Alin Suciu, Technical University of Cluj-Napoca, Romania
- Nicolae Tapus, "Politehnica" University, Bucharest, Romania

Additional Reviewers

- Ionut Anghel, Technical University of Cluj-Napoca, Romania
- Raluca Brehar, Technical University of Cluj-Napoca, Romania
- Viorica Rozinta Chifu, Technical University of Cluj-Napoca, Romania
- Tudor Cioara, Technical University of Cluj-Napoca, Romania
- Anca Ciurte, Technical University of Cluj-Napoca, Romania
- Arthur Daniel Costea, Technical University of Cluj-Napoca, Romania
- Ion Giosan, Technical University of Cluj-Napoca, Romania
- Catalin Golban, Technical University of Cluj-Napoca, Romania
- Mihai Negru, Technical University of Cluj-Napoca, Romania
- Cristina Bianca Pop, Technical University of Cluj-Napoca, Romania
- Robert Varga, Technical University of Cluj-Napoca, Romania
Organizing Committee

- Gheorghe Sebestyen-Pal, Technical University of Cluj-Napoca, Romania
- Tiberiu Marita, Technical University of Cluj-Napoca, Romania
- Radu Razvan Slavescu, Technical University of Cluj-Napoca, Romania
- Andrei Vatavu, Technical University of Cluj-Napoca, Romania
ICCP 2012 Organizers

Computer Science Department
Technical University of Cluj-Napoca, Romania

Technical University of Cluj-Napoca
Romania

The Academy of Technical Sciences
Romania

ICCP 2012 Sponsor

IEEE Romania Section
Table of Contents

Foreword v
Keynote Lecture - Dario M. Gavrila vi
Keynote Lecture - Bernd E. Wulfinger vii

Part I: Intelligent Systems

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking the Norms for Explanation</td>
<td>3</td>
</tr>
<tr>
<td>Ioan Alfred Letia, Anca Gornean</td>
<td></td>
</tr>
<tr>
<td>Justifying Argument and Explanation in Labelled Argumentation</td>
<td>11</td>
</tr>
<tr>
<td>Ioan Alfred Letia, Adrian Groza</td>
<td></td>
</tr>
<tr>
<td>Individualized Service Selection with Ontologies and Rules</td>
<td>19</td>
</tr>
<tr>
<td>(short paper)</td>
<td></td>
</tr>
<tr>
<td>Ioan Alfred Letia, Octavian Pop</td>
<td></td>
</tr>
<tr>
<td>Designing a Travel Recommendation System using Case-Based Reasoning</td>
<td>23</td>
</tr>
<tr>
<td>and Domain Ontology</td>
<td></td>
</tr>
<tr>
<td>Camelia Lemnaru, Micaela Dobrin, Mihaela Florea, Rodica Potolea</td>
<td></td>
</tr>
<tr>
<td>GridTiles: a method for modelling a spatial unconstrained environment</td>
<td>31</td>
</tr>
<tr>
<td>Christian Holgado, Holger Mielke, Joerg Heckel, Dieter Schreinemans</td>
<td></td>
</tr>
<tr>
<td>A spatial-temporal data model for choosing optimal multimodal routes</td>
<td>37</td>
</tr>
<tr>
<td>in urban areas (short paper)</td>
<td></td>
</tr>
<tr>
<td>Gabriel Dragomir</td>
<td></td>
</tr>
<tr>
<td>Real-Valued Quantum-Inspired Evolutionary Algorithm for Multi-Issue</td>
<td>41</td>
</tr>
<tr>
<td>Multi-Lateral Negotiation</td>
<td></td>
</tr>
<tr>
<td>Florin Leon</td>
<td></td>
</tr>
<tr>
<td>Firefly-based Business Process Optimization</td>
<td>49</td>
</tr>
<tr>
<td>Ioan Salomie, Viorica Rozina Chifu, Cristina Bianca Pop, Radu Suciu</td>
<td></td>
</tr>
<tr>
<td>Hybrid Genetic Algorithm for Selecting the Optimal or</td>
<td>57</td>
</tr>
<tr>
<td>Near-optimal Solution in Semantic Web Service Composition</td>
<td></td>
</tr>
<tr>
<td>Cristina Bianca Pop, Viorica Rozina Chifu, Ioan Salomie, Adela</td>
<td></td>
</tr>
<tr>
<td>Negrean, Horatiu Jellea</td>
<td></td>
</tr>
<tr>
<td>Business Process Optimization using Bio-Inspired Methods Ants or</td>
<td>65</td>
</tr>
<tr>
<td>Bees Intelligence?</td>
<td></td>
</tr>
<tr>
<td>Cristina Bianca Pop, Viorica Rozina Chifu, Ioan Salomie, Tunde</td>
<td></td>
</tr>
<tr>
<td>Kovacs, Alexandre Nicolae Niculici, Dumitru Samuel Suia</td>
<td></td>
</tr>
<tr>
<td>A Proposed Generalized Mean Single Multiplicative Neuron Model</td>
<td>73</td>
</tr>
<tr>
<td>Mohamed A. Attia, Elsayed A. Sallam, Mahmoud M. Fahmy</td>
<td></td>
</tr>
<tr>
<td>Multi-Valued Neuron with a periodic activation function - New</td>
<td>79</td>
</tr>
<tr>
<td>learning strategy (short paper)</td>
<td></td>
</tr>
<tr>
<td>Valentin Mircea Lupea</td>
<td></td>
</tr>
<tr>
<td>Designing software locking mechanisms against reverse engineering,</td>
<td>83</td>
</tr>
<tr>
<td>using artificial neural networks (short paper)</td>
<td></td>
</tr>
<tr>
<td>Cristian Lungu, Rodica Potolea</td>
<td></td>
</tr>
<tr>
<td>Applying Mathematical Models in Software Design (short paper)</td>
<td>87</td>
</tr>
<tr>
<td>Alina Andreica, Daniel Stuparu, Călin Mu</td>
<td></td>
</tr>
<tr>
<td>Recognizing Textual Entailment with Synthetic Analysis Based on</td>
<td>91</td>
</tr>
<tr>
<td>SVM and Feature Value Control (short paper)</td>
<td></td>
</tr>
<tr>
<td>Shangqing Zhang, Di Zhai, Yinglin Wang, Jun Shi, Ruixiu Zhang</td>
<td></td>
</tr>
</tbody>
</table>
SUP: A Service Oriented Framework for Semantic User Profile Extraction and Representation (short paper)
Emanuela Boros, Alexandru-Lucian Cîșcău, Sabin-Corneliu Buraga, Lenața Alboaei ...

Towards a Conceptual Model for Describing the Personas Methodology (short paper)
Stefan Negru, Sabin-Corneliu Buraga ...

Hierarchy of Risk Factors for Chronic Kidney Disease in Patients with Type 2 Diabetes Mellitus (short paper)
Cosmina Ioana Bondor, Ina Maria Kacso, Alina Ramona Lenghel, Adriana Muresan ...

Part II: Computer Vision

A real-time multiple vehicle classification and tracking system with occlusion handling
Afshin Ghassemi, Reza Salabakhsh ...

A machine vision based working traffic emission estimation and surveillance schema
Pasi Pyykönen, Birgitta Martinkauppi, Maria Jokela, Matti Kuitla, Jarkko Leino ...

Cut-in Maneuver Recognition and Behavior Generation using Bayesian Networks and Fuzzy Logic
Voichita Popescu, Sergiu Nedevschi ...

Towards an Accurate Topological Localization using a Bag-of-SIFT-Visual-Words Model
Emanuela Boros ...

Data Mining in digital image processing using the Gabor filters algorithm (short paper)
Oana Astrid Vatamanu, Mihaela Ionescu ...

Accurate Localization of Mobile Robot under the Weakly Calibrated Motion Model
Pangyu Jeong, Dan Pojar, Sergiu Nedevschi ...

Robust visual odometry using stereo reconstruction error model
Dan Pojar, Pangyu Jeong, Sergiu Nedevschi ...

Multiple partial solutions for the point-to-point correspondence problem in three views (short paper)
Miguel Carrasco ...

A robust video watermarking based on image mosaicing and multi-frequentual embedding
Asma Kerbiche, Saoussen Ben Jbara, Ezeddine Zagrouba ...

PCA type algorithm applied in face recognition
Sergiu Nedevschi, Ioan Radu Peter, Adina Mandrut ...

Image Retrieval by Comparison between Complete Oriented Graphs of Fuzzy Regions
Adir Gallas, Wald Barhoumi, Ezeddine Zagrouba ...

Active contours: Application to plant recognition
Loreta Şuta, Fabien Bessy, Cornelia Veja, Miuthea Florin Vaidă ...

A Deformable Model Based on Level Sets for Image Segmentation (short paper)
Bashir Bagheri Nakhjavano, M. E. Guheveran, Marian Hajiesmaeli, Tim J. Ellis, Jamshid Dehmeshki ...

Efficient Real-time Contour Matching
Robert Varga, Arthur Costea, Istvan Szakacs, Sergiu Nedevschi ...

Optimizing the Census Transform on CUDA enabled GPUs
Cosmin D. Pantilie, Sergiu Nedevschi ...

Mobile Embedded System for Human Computer Communication in Assistive Technology (short paper)
Robert Gabriel Lupu, Florina Ungureanu, Radu Gabriel Bozomita ...

Image Segmentation Based on Active Contours without Edges
Anca Gallas, Wald Barhoumi, Ezeddine Zagrouba ...

A solution for probabilistic inference and tracking of obstacles classification in urban traffic scenarios
Ion Ghean, Sergiu Nedevschi ...

Pari-based pedestrian detection using HoG features and vertical symmetry
Andrei Claudiu Cosma, Raluca Brebar, Sergiu Nedevschi ...

A New Type of Hybrid Features for Human Detection (short paper)
Azadeh S. Mozaafari, Mansour Jamzad ...

Chromatic Aberration Correction in Raw Domain for Image Quality Enhancement in Image Sensor Processors (short paper)
Alexis Lluis-Gomez, Eran A. Edirisinghe ...
Novel Color, Shape and Texture-based Scene Image Descriptors (short paper)
Sugata Banerji, Atreyee Sinha, Chengjun Liu .. 245

Finger Vein Recognition Using Linear Kernel Entropy Component Analysis (short paper)
Seppehr Damavandinejadmonfared .. 249

Kernel Entropy Component Analysis using local mean-based k-nearest centroid neighbour (LMKNCN) as a classifier for face recognition in video surveillance camera systems (short paper)
Seppehr Damavandinejadmonfared .. 253

Part III: Distributed Computing and Networking 257

Aggregated metrics guided software restructuring
Zsuzsanna Marian ... 259

Genetic Approach for Real-Time Scheduling on Multiprocessor Systems
Georghe Sebestyen, Anca Hangan .. 267

Hybrid Particle Swarm Optimization Method for Process Mining
Viorica Rozina Chifu, Cristina Bianca Pop, Ioan Salomie, Izabella Balla, Ramona Paven 273

A membrane computing inspired packing solution and its application to service center workload distribution
Daniel Moldovan, Georgiana Copil, Ioan Salomie, Ionut Anghel, Tudor Cioara 281

Cloud SLA Negotiation for Energy Saving - A Particle Swarm Optimization Approach
Georgiana Copil, Daniel Moldovan, Ioan Salomie, Tudor Cioara, Ionut Anghel, Diana Borza 289

Agent-based Cloud Resources Negotiation (short paper)
Gabriela Andreea Morar, Andreea Ilea, Alexandru Butai, Gheorghe Cosmin Silaghi 297

An integrated Case-based Reasoning, Ontology-driven approach for designing Recommendation Systems (short paper)
Mihaela Dincorenau, Mioara Dobrin, Mihaela Florea, Alexandra Fodor 301

Data storage for smart environment using non-SQL databases (short paper)
Piroska Haller, Gyula Farkas, Ioan-Cosmin Szanto 305

Catch me if you can: Using Self-Camouflaging Images to Strengthen Graphical Passwords
Mihai Odrea, Rainer Renaud .. 309

Parallel Implementation of the TestU01 Statistical Test Suite
Alin Suciu, Radu Alexandru Toana, Kinga Marton 317

Random Network Coding Based Solution for Resource Efficient Data Dissemination
Zsuzsanna Ilona Kiss, Zsolt Alfred Polgar ... 323

Invited Session: HiPerGRID (supported by the project ERRIC, FP7-REGPOT-2010-1, ID: 264207) 329

Scheduling Service with SLA Assurance for Private Cloud Systems
Mihaela-Catalina Nita, Florin Pop, Valentin Cristea 331

Grid to Cloud Migration of Scientific Applications, Using Dynamically Created Cloud Clusters
Lehel Biro, Victor Bacu, Denis Rosita, Laszlo Barabas, Dorian Gorgon 335

An Analysis of Techniques for Opportunistic Networking
Alexandru Asandei, Ciprian Dobre, Princy Johnson 341

Comparison between Parallel and Distributed Molecular Dynamics Simulations of Lennard-Jones Systems
Vlad Baja, Dorian Gorgon, Titus Beu .. 349

Particle Based Modelling and Processing of High Resolution and Large Textile Surfaces
Adrian Sabou, Cristinel Mihai Mocan, Dorian Gorgon 355

Techniques of abstraction and use of metadata structures
Lavinia Andrea Andrei, Florina Constantin, Alexandru Boicea, Florin Radulescu 361

Index 367
Mobile Embedded System for Human Computer Communication in Assistive Technology

Robert Gabriel Lupu, Florina Ungureanu,
Computer Science Department
Technical University of Iasi
Iasi, Romania
rupert@cs.tuiasi.ro; fungurea@cs.tuiasi.ro

Radu Gabriel Bozomitu
Telecommunication Department
Technical University of Iasi
Iasi, Romania
bozomitu@eeti.tuiasi.ro

Abstract—In this paper a new technology to communicate with people with neuro-locomotor disabilities using embedded systems and eye tracking approach is presented. The eye movement is detected by a special device and the voluntary eye blinking is correlated with a pictogram or keyword selection reflecting patient’s needs. The implemented eye tracking method uses image processing technique based on binarization algorithm.

Keywords: eye tracking, assistive technology, image processing, binarization algorithm, embedded systems

I. INTRODUCTION

Every human being, as a society member relies on communications to express its thoughts, wishes and needs to exchange ideas. Deaf or dumb people can express themselves through signs or handwriting and blind people have Braille alphabet as an alternative for communication. However there is a category of people with severe speech and motor impairment or with neuro-locomotor disabilities. Despite their affliction, these persons still have a very good level of understanding and perception. They can express themselves only in presence of an attendant or a caretaker and communication is basically gestural assisted. The caretakers can use e-tran frames [1] to guess a letter by following the gaze direction of the patient or making a direct selection by pointing a pictogram [2] or a letter from a board or by changing sheets with images (scanning method). In all cases, the patient needs to confirm or infirm the caretaker’s selection until the current one corresponds to his needs. This communication method implies continuous presence of the caretaker near bedside of the patient. A solution is to use a low cost device to assist the patient in communication process.

Taking into account that most of the neuro-disabled patients can move their eyes, this can be useful for eye tracking device [3] using electro-oculogram (EOG) signals and computing five kinds of intentions (four directions - up, down, right, left and one selection - blink) [4] can be used together with a computer to select a word from a menu. This device should be used by patient for a face to face conversation or a remote message sent via communication network [5]. Another approach is to use a camera for tracking the eye movements. Thereby camera mouse can be used to move a cursor on a computer screen and to browse a menu for suggestive pictogram selection [6].

In this paper we propose a mobile device for patient communication and also an optimised algorithm for video eye tracking implemented on embedded system. The goal is to replace the personal computer used by patient in some previous approaches with an embedded mobile system which has the advantage of low price and low power. The mobile patient device is part of the communication system named ASSISTSYS [7], designed and implemented in concordance with the international rules regarding assistive technology.

II. COMMUNICATION SYSTEM ARCHITECTURE

The communication system consists in three main modules: caretaker device, patient device and server. The caretaker device is a smartphone with GPRS and/or Wi-Fi communication module. The Java software application named AssistSysCaretaker running on caretaker device allows caretaker to receive keywords related to a certain patient’s need or wish.

Figure 1. Assistsys system communication principle

The mobile patient device is an embedded system running Angstrom OS and a software application named AssistSysPatient. The AssistSysPatient assists the patient in keyword selection process and transmits the selected keyword to the caretaker. The server is a PC, running application software named AssistSysServer which manages communication between patients and caretakers. If the patient makes a selection the corresponding keyword is sent to server. A
caretaker is selected and the keyword is forwarded to his communication device. The caretaker’s response is sent back to the server. If this is positive, it is considered accomplished. The keywords are selected by patient using eye tracking technique. For this we used a modified webcam mounted on a glasses frame and placed right underneath the eye at a distance of seven centimetres. The angle between eye axis and webcam axis is 30 degrees. Due to the uncontrolled specular reflection, the eye is illuminated uniformly by infrared light eliminating this inconvenient. For this, an IR filter was used and three IR LEDs have been mounted around the lens. The implemented eye tracking algorithm detects the eye movements and maps the eye position from webcam coordinates to the monitor coordinates moving the cursor corresponding to gaze position. In this way the patient can point an image related to a keyword. Moving the eye to left or right the device displays others keywords. The selection of a keyword is done by voluntary blink (eye closed or double blinking for one second).

![Figure 2. Functional diagram for AsistysPatient software](image)

The input layer manages image acquisition with 640x480 resolution and a rate of 25 frames per second. The acquired image is pre-processed (like horizontal flipping, filtering, inverse threshold binarization) in order to obtain suitable information for eye pupil detection by the second level. At each AsistysPatient application launching, the input layer also executes the module for region of interest (ROI) establishment (the image region where the eye pupil is).

The middle layer executes the eye tracking algorithm, the most important part of application. Thereby, this second layer determines the pupil position in the webcam coordinates, maps this position to the screen coordinates and moves the pointer on the screen accordingly to the eye movement. The word or pictogram selection (click) is made when two successive blinks are detected in a certain time. Based on eye movement and blinking, the user graphic interface reacts in different ways, in concordance with patient’s choice.

The output layer implements the communication with the server. The communication protocols are presented in detail in some previous papers [3,5,7].

III. Mobile Patient Device

The mobile device structure is based on BeagleBoard XOM [9] containing the dual core processor TI DM3730, ARM kernel works at 1 GHz and DSP kernel at 800 MHz. The device disposers of 512 Mb SDRAM and the connectivity capabilities consist of DVI-D video output connector, audio output connector, USB 2.0 OTG port and Ethernet adapter.

The software application was written using Qt [10] as a cross-platform C++ integrated development environment and OpenCV library [11] for image processing. Should be noticed that hardware acceleration offered by DSP kernel is not used because the functions from OpenCV library are not optimised to run on digital signal processors. The software application is organized on three layers, as it is presented in fig. 2.

The input layer manages image acquisition with 640x480 resolution and a rate of 25 frames per second. The acquired image is pre-processed (like horizontal flipping, filtering, inverse threshold binarization) in order to obtain suitable information for eye pupil detection by the second level. At each AsistysPatient application launching, the input layer also executes the module for region of interest (ROI) establishment (the image region where the eye pupil is).

The middle layer executes the eye tracking algorithm, the most important part of application. Thereby, this second layer determines the pupil position in the webcam coordinates, maps this position to the screen coordinates and moves the pointer on the screen accordingly to the eye movement. The word or pictogram selection (click) is made when two successive blinks are detected in a certain time. Based on eye movement and blinking, the user graphic interface reacts in different ways, in concordance with patient’s choice.

The output layer implements the communication with the server. The communication protocols are presented in detail in some previous papers [3,5,7].

The keywords list browsing is ensured by a friendly graphic user interface. In the beginning of application, the message “Blink twice to start keywords display!” is displayed on screen. After the display starts, the patient should move his eyes to right or left in order to rotate the categories or keywords list in concordance with gaze direction. The keywords collection is organized as a tree structure having wide and short topology. The breadth first traversal method is used for keywords searching and for an easy and fast comeback to the upper levels. “Go back” images are placed at the right and left limits.

If a category pictogram is selected by a voluntary double blinking, the corresponding keywords list is displayed and if a keyword is selected, its assigned message is sent to server. It should be mentioned that every keyword is accompanied by a related pictogram and a background text colour. These three information types form an image that could be selected by the patient. Each time when an image is displayed in the middle of the screen the patient hears the related keyword in his speakers.
IV. EYE TRACKING METHOD

The milestone of integrating eye movements into human computer interaction is the implementation of a reliable eye tracking method. Parkhurst and Li [12] proposed the Starburst algorithm that extracts the location of the pupil centre and the corneal reflection so as to relate the vector difference between these measures to coordinates in the scene image. After locating and removing the corneal reflection from the image, the algorithm identifies the pupil edge points using an iterative feature based technique. In the beginning of our research, the Starburst algorithm implementation on a PC provided good results for point of gaze detection although the stability was not very high. Due to important hardware resources requested by Starburst algorithm, it was almost impossible to obtain an efficient implementation for it on a mobile embedded system. Another approach was necessary to explore. The proposed method for eye tracking is based on the binarization algorithm and its diagram is presented in fig. 3.

The first task of eye tracking algorithm is performed by “Image acquisition” module and consists in image acquisition with 640x480 resolution and 25 frames/second. The acquired images are converted in grey images with 256 levels by “Image processing” module. A blur filter is applied to each image to reduce image details and noise, e.g. the bokeh effect produced by an out of focus lens or object shadow under usual illumination. Then, the image is horizontally flipped in order to obtain the same coordinates both for screen and webcam. These actions are necessary because the camera is facing the user and not the monitor so the eye movements are reversed.

The algorithm supposes that the darkness pixels from image correspond to eye pupil. But, some others points compete for darkness points feature and generate uncertainty in pupil position detection. This inconvenient is solved by establishing the region of interest within which the eye pupil is. This task is performed by “ROI setup” module, each time when application is launched or when user requests this operation. ROI setup consists in the following steps:

* Each image is bordered at the outer limits corresponding to eyebrows and corner of the eye where the light creates a shade most of the time. Bordering means filling with white and in this way a great amount of possible noise is reduced. Border thickness was empirically established.

* An inverted binary filter is applied. The threshold adapts itself (by increasing/decreasing) more accurate to the environment conditions after every acquired frame. Thus, if a change occurs in image illumination the algorithm succeeds to adapt itself to the new conditions in a few frames. Note that if the eye trace goes beyond region of interest because of sudden changed conditions, the image is considered not steady and waits the filter to adapt itself.

* For the obtained image, the percentage of white pixels (imgWP) in region of interest is computed. Then, it is checked if imgWP is in the settled range. Note that imgWP represents the white pixels percent for the whole image and was empirically established and ε is the accepted tolerance. If imgWP is in the settled range the mass centre of white pixels is computed and the ROI and binary threshold are settled. The ROI establishment is necessary to increase computation efficiency because every following calculus will be done in this region.

Figure 3. Eye tracking method diagram
After region of interest establishment, the "ROI setup" module is hold on and waits for a new request. Meanwhile, the message "Detection in progress" is displayed on the screen.

The next stage consists in detection itself and is performed by "Eye tracking" module. Each grey image already flipped and filtered previously is processed by the binarization algorithm. A threshold can be used to create binary image (each pixel is only black or white) from a greyscale image. The initial value of the binarization threshold is provided by "ROI setup" module and it is incremented or decremented to have a suitable value for next image.

The center of the eye pupil corresponds to the center of mass of the image with only white pixels from the region of interest. If the percentage of white pixels decreases very quickly (patient closes his eyes), a blink is detected and the binarization threshold is not modified.

In order to determine the point on the screen at which the patient gazes, a mapping function between webcam eye position coordinates and monitor coordinates was implemented. This is done by a calibration procedure. According to Parkhurst [12], the calibration method which has the lowest error degree is based on biquadratic function. This nonlinear mapping function needs nine calibration points for determining coefficients values. The points with known coordinates are displayed on the monitor in a 3x3 grid and divide the screen in four quadrants. The mapping functions are widely described in [13].

The patient gazes all the nine points one by one and the pupil positions are stored related to webcam coordinates. These calculations for mapping functions are done by "Calibration" module. "User input" module determines the cursor position on monitor screen. All calculations can be performed in real time.

Based on cursor position coordinates, the "User input" module decides to rotate the screen image to right or left in concordance with patient’s eyes movement. If the time between two consecutive blinks is shorter then a fixed value (1 second) these blinks are considered to be a selection of the image from the middle of the screen (a keyword or category of words).

The eye-tracking algorithm was tested with the help of 25 volunteers. There were encountered only two errors: the volunteers were highly makeup young ladies and some others value for img/WPS and accepted tolerance had to be chosen.

The binarization algorithm is sensitive to light intensity but the detection is stable and accurate in comparison with Starburst. Obviously, the most important advantage of binarization algorithm is lower computational effort that makes possible its implementation on embedded system

V. RESULTS AND CONCLUSIONS

The proposed communication system fits with assistive technology initiative and aims to provide a mobile and low cost device for human computer interaction. This research presented in this paper is based on a good collaboration with medical staffs from neurology hospitals. The doctors and nurses suggested important details regarding communication facilities. Patients’ reaction important hardware and software optimization.

The prototype of the proposed system has been tested at Clinical Emergency Hospital “Bagdasari-Arzen” in Bucharest. For each patient a bioethical agreement was accepted by the patient or his family. The evaluation and testing protocol consisted of system presentation and demonstration, patients’ acquaintance with the keyboard selection method using the special glasses with webcam assistance for calibration method and patient training.

After tests, every patient or family member filled a likert questionnaire with nine questions concerning the tested communication system. The questions considered the satisfaction degree of communication, system usability, communication based on keywords, keyboard selection mode, and system utility. The system was rated with 210 points from 225 maximum possible. The communication system was also evaluated by medical staff and the overall score was of 18 from a maximum of 25.

The experiments made with patients have confirmed a positive impact of the proposed communication solutions and the reliability and accuracy of the eye tracking method.

REFERENCES
