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ABSTRACT 
 
The problem considered is estimating the time delays and 
amplitudes of a train of pulses of known shape. It was 
recently shown that in the absence of noise, if the pulses are 
short relative to the interval separating them, the stream of 
pulses can be sampled at rates lower than the Nyquist rate 
without any loss of information. This paper investigates the 
performance of time delay and amplitude estimation from 
samples taken at low (sub-Nyquist) rates when the stream of 
pulses is affected by additive white Gaussian noise. To this 
end, the Cramér-Rao bound (CRB) is developed. For a 
particular setup, the CRB for time delay estimation is 
inverse proportional to the cube of the sampling rate, while 
the CRB for amplitude estimation is inverse proportional to 
the sampling rate. Numerical simulations confirm this result. 
 

Index Terms — Cramér-Rao bound, time delay and 
amplitude estimation, low rate sampling, pulse train  
 

1. INTRODUCTION 
 
In many applications, signals can be uniquely described by a 
small number of parameters. For example, in radar and 
wireless communications signal can be constituted of a 
stream of short pulses of known shape, stream that is 
defined by the time delays and amplitudes of the pulses. 
Estimation of these parameters is the subject of this work. 
Time delay estimation and amplitude estimation are 
conventionally performed from samples taken at rates 
higher than the Nyquist rate, which is twice the signal’s 
bandwidth. This approach is required when the only 
knowledge on the signal is that it is bandlimited. Other 
priors on signal structure can lead to more efficient 
sampling. An interesting class of structured signals was 
considered in [1], where the signals have a finite number of 
degrees of freedom per unit time. These signals were termed 
to have finite rate of innovation (FRI). A special case of FRI 
signals consists of a stream of ܭ pulses of known shape per 
time interval ܶ. For such a stream, any of its segments of 
length ܶ is uniquely determined by no more than 2ܭ 
parameters, i.e., ܭ time delays and ܭ amplitudes. It is then 

said that the signal’s local rate of innovation is finite and 
equals 2ܭ ܶ⁄ .  

For streams of pulses of short duration relative to the 
reference interval ܶ, standard sampling methods require 
very high sampling rates. However, the rate of innovation 
per interval ܶ is much smaller than the number of samples 
taken at the Nyquist rate. This observation was exploited to 
set the grounds for sampling at rates lower than the Nyquist 
rate. To this end, a mechanism to sample at low rates 
streams of Diracs can be found in [1], and the references 
therein. A scheme for recovering the original stream from 
the samples was also proposed. More recent work, [2, 3], 
generalizes the approach to sampling at low rates streams of 
pulses of known arbitrary shape, rather than just Diracs, by 
considering a multichannel sampling setup. Although the 
proposed multichannel sampling scheme allows perfect 
recovery of the original signal from its noiseless samples, it 
was found in [4] that in the presence of noise the 
performance of the signal recovery from low rate samples 
deteriorates significantly relative to the signal recovery from 
samples taken at the Nyquist rate. However, with low rate 
sampling, increasing the sampling rate above the rate of 
innovation brings substantial performance improvement. 

This work considers low rate sampling of streams of 
pulses as in [2, 3], but rather than recover the signal itself, 
the goal is to estimate specific signal parameters,  
specifically, delay and amplitude. The signal recovery in [2, 
3] is equivalent to estimating all the unknown signal 
parameters, e.g., time delays and corresponding amplitudes. 
By contrast, estimation of individual parameters may be 
performed independently, e.g., delay estimation does not 
require the estimation of amplitudes, and thus its 
performance may vary with system parameters differently 
than that of signal recovery.  

The paper is organized as follows: Section 2 provides the 
system model for a multichannel sampling scheme. In 
Section 3, CRB expressions are developed for TDE and 
amplitude estimation. Discussion of our results vis-à-vis 
other work is included. Section 4 contains numerical results, 
and conclusions wrap up the paper. 
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expressions in the frequency domain are 2ߨ ܶ⁄  periodic and 
߱ is restricted to the interval ሾ0, ߨ2 ܶ⁄ ሻ.  

If ࢉ is a column vector collecting ܥ௣ሺ݁௝ఠ்ሻ from all the ܲ 
sampling channels,  

 
ࢉ ൌ ࢟ࡿ ൌ ࢇࡰሻ࣎ሺࡺࡳࡿ ൅ (5) ,ࣁࡿ

 

where ࡿ is a ܲ ൈ ܲ matrix of elements 
ଵ

்
ܵ௣∗൫߱ ൅ ߱௤൯, 

ࡳ ൌ diagሼܩሺ߱ ൅ ߱ଵሻ,…ܩሺ߱ ൅ ߱௉ሻሽ, ࡺሺ࣎ሻ is a ܲ ൈ  ܭ
matrix of elements ݁ି௝ఠ೜ఛೖ, ࡰ ൌ diagሼ݁ି௝ఠఛభ, … ݁ି௝ఠఛ಼ሽ, 
்ࢇ ൌ ሾܣଵሺ݁௝ఠ்ሻ,  ௞ሺ݁௝ఠ்ሻ is the DTFT ofܣ ,௄ሺ݁௝ఠ்ሻሿܣ…
ܽ௞ሾ݊ሿ, ࢟ is a column vector collecting elements ܻ൫߱ ൅ ߱௤൯, 
and ࣁ is a column vector collecting elements ࣨ൫߱ ൅ ߱௤൯. 
Although it not explicitly evident in the notation, note the 
dependence on ݁௝ఠ் of the all the arrays in (5) except ࡺሺ࣎ሻ. 
Also note that the unknown time delays ߬௄ are embedded in 
 ௄ are in theߙ while the unknown amplitudes ,ࡰ ሻ and࣎ሺࡺ
amplitudes ܣ௞ሺ݁௝ఠ்ሻ. Matrices ࡿ and ࡳ are known. 

We briefly review the operations performed within the 
Estimation block, as proposed in. First, (5) is normalized by 
ࢃ ଵ, withିࢃ ൌ ࣆ Thus, let .ࡳࡿ ൌ ࢉଵିࢃ ൌ ࢇࡰሻ࣎ሺࡺ ൅
࢈ By denoting .ࣁଵିࢃ ൌ ഥࣁ and ࢇࡰ ൌ  dependence) ࣁଵିࢃ
on ݁௝ఠ் continues to be implicit) and taking the inverse 
DTFT, 

 
ሾ݊ሿࣆ ൌ ሾ݊ሿ࢈ሻ࣎ሺࡺ ൅ ഥሾ݊ሿ. (6)ࣁ

 
Matrix ࡺሺ࣎ሻ has a Vandermonde structure and thus 

super-resolution techniques, [5, 6], traditionally used in 
spectral estimation, can be employed with (6) to estimate the 
time delays ࣎, where the number of multipaths ܭ is a priori 
known, [2]. Once ࣎ is known, the vector ࢇ can be found 
using the linear relation ࢇ ൌ  where  is the ,ࣆሻ࣎றሺࡺଵିࡰ
Moore-Penrose pseudo-inverse of ࡺሺ࣎ሻ. Further, with 
knowledge of the sequence ሼݔெሾ݊ሿሽ, the amplitudes ߙ௞ can 
be determined. 

In the absence of noise ࣁ, the filter-bank sampling 
scheme supports recovery of the signal ݔሺݐሻ only if the 
number of samples ܲ per interval ܶ is at least 2ܭ. The 
number of samples cannot exceed the number at Nyquist 
rate, 2ܶࣜ௚, where ࣜ௚ is the single side bandwidth of the 
pulse shape (if band-limited), [2, 7]. Combined, these lead 
to condition 2ܭ ൑ ܲ ൑ 2ܶࣜ௚ for the filter-bank scheme to 
work. 

Also note that the values of ࣆሾ݊ሿ are obtained in (6) by 
taking the inverse DTFT of ିࢃଵࢉ. Thus, the matrix ࢃ 
needs to be stable invertible. One example of sampling 
filters satisfying this condition is 

 

ܵ௣ሺ߱ሻ ൌ ൜
ܶ, for	߱ ∈ ൣ߱௣, 	߱௣ ൅ ߨ2 ܶ⁄ ൧
	0, otherwise.	 																											

 (7)

 

3. CRAMER-RAO BOUND 
 

The performance of an estimate ࣂ෡ of a vector parameter ࣂ 
from a set of measurements is typically measured by its 
mean squared error (MSE). A lower bound on the MSE is 
often used instead to gain insight into the factors affecting 
the MSE. The Cramér-Rao bound (CRB) is a lower bound 
on the MSE of any unbiased estimate of ࣂ. For the problem 
at hand, the available measurements are the samples ࢉ, 
obtained as (5) by a filter-bank low rate sampling scheme 
applied to the FRI signal ݕሺݐሻ of (1). Since ሼݔெሾ݊ሿሽ in (1) is 
assumed known, the unknown parameter vector is ࣂ ൌ
ሾ߬ଵ,… , ߬௄, ,ଵୖߙ … , ௄ߙ

ୖ, ଵ୍ߙ , … , ௄ߙ
୍ ሿ୘, where ߙ௜

ୖ ൌ Reሼߙ௜ሽ is the 
real part of ߙ௜ and ߙ௜

୍ is the imaginary part of ߙ௜. The CRB 
on the MSE of an element ߠ௜ of ࣂ is given by the ݅-݅ element 
of a matrix ࡯ሺࣂሻ, i.e., CRBሺߠ௜ሻ ൌ ሾ࡯ሺࣂሻሿ௜,௜. By definition, 
the matrix ࡯ሺࣂሻ is the inverse of the Fisher Information 
Matrix (FIM), whose elements are given by [8], 

 

ሾࡶሺࣂሻሿ௜,௝ ൌ ॱ ቊ
߲ଶ ln ݂ሺࢉ; ሻࣂ

௝ߠ߲	௜ߠ߲
ቋ, (8)

 

where ݂ሺࢉ;  ሻ is the probability density function (pdf) of theࣂ
sample vector ࢉ, parameterized by ࣂ. 

The CRB for the signal reconstruction from low rate 
samples was discussed in [4]. In contrast, we are concerned 
here with parameter estimation, rather than estimation of the 
signal itself. Insight into the performance is developed from 
closed-form results for a particular setting, as stipulated  in 
Theorem 1 below.  

We make the following two assumptions: 
(A1)  The pulse shape shape ݃ሺݐሻ is ideal, in the sense 

that ܩሺ߱ሻ ൌ 1 for ߱ ∈ ൣെ2ࣜߨ௚, ሺ߱ሻܩ ௚൧ andࣜߨ2 ൌ 0 
everywhere else.  

(A2)  Φ௫ሺ߱ሻ ൌ หݔሺ݁௝ఠ்ሻห
ଶ
, where ݔሺ݁௝ఠ்ሻ is the DTFT 

of the sequence ሼݔሾ݊ሿሽ, and Φ௫ሺ߱ሻ is assumed constant and 
known within the frequency range of interest. With this, we 
define the signal to noise ratio (SNR) as Φ௫ሺ߱ሻ ⁄ఎଶߪ . Note 
that if ሼݔሾ݊ሿሽ௡ୀଵே  is a long bipolar sequence, where the ൅1 
and െ1 symbols are equiprobable, it can be further shown 
that Φ௫ ൌ ܰ, [9]. 
 

Theorem 1. Let ࢉ in (5) consist of the low rate samples of a 
semi-periodic stream of pulses in AWGN noise, of form (1). 
Under assumptions (A1) and (A2), with the choice (7) of the 
sampling filters, and for a multipath free environment, i.e., 
ܭ ൌ 1, the CRBs for delay and amplitude estimation from 
low rate samples are: 
 

CRBሺ߬ଵሻ ൌ
3
ଶߨ2

1
ଵ|ଶߙ|ܴܰܵ

ܶଶ

ܲଷ
, (9)

 

CRBሺߙଵሻ ൌ
1

ܴܵܰ
1
ܲ
. (10)

 

Proof: See Appendix for a sketch of the proof.  
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5. CONCLUSIONS 
 
Performance of time delay and amplitude estimation from 
low rate samples of pulse trains has been addressed. In 
particular, the CRB expression for the case of using a filter-
bank sampling scheme was developed. With some 
simplifying assumptions, closed form expressions were 
determined for multipath free signal. The estimation 
performance in noise was shown to deteriorate significantly 
if the number of samples taken is the one indicated by the 
rate of innovation rather than by the Nyquist rate. 
Specifically, with the simplifying assumptions considered, 
the CRB is inverse proportional to the cube of the number of 
sampling filters for delay estimation and to the number of 
sampling filters for amplitude estimation.  

 
6. APPENDIX 

 
Due to space considerations, we can provide in this 
appendix only a sketch of the proof of Theorem 1. We start 
by expressing the pdf ݂ሺࢉ;  ሻ used in (8) in terms of theࣂ
signal model (1) 
 

݂ሺࢉ; ሻࣂ ൌ
1

det൫ࡷߨఌಿ൯
݁ିሺࢉಿିࣆ෥ಿሻ

ౄࡷഄಿ
షభሺࢉಿିࣆ෥ಿሻ , (11)

 
where ࢉே

୘ ൌ ሾࢉ୘ሾ1ሿ, … , ෥ேࣆ ,ሿ	୘ሾܰሿࢉ
୘ ൌ ሾࣆ෥୘ሾ1ሿ, … ,  ,ሿ	෥୘ሾܰሿࣆ

and the observation interval is limited to ሾ0, ܰܶሻ. The 
matrix ࡷఌಿ denotes the ܰܲ ൈ ܰܲ covariance matrix of the 
noise vector ࢿே

୘ ൌ ሾࢿ୘ሾ1ሿ, … ,  ሿ. Equation (15.52) from	୘ሾܰሿࢿ
[8] is applied to (11), together with the observation that the 
covariance matrix ࡷఌಿ does not depend on parameter ࣂ 
[11], to reduce (8) to 

 

ሾࡶሺࣂሻሿ௜,௝ ൌ 2Re ቊ
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௉
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. (14)

 

Term (13) is obtained from (12) by replacing the data vector 
 ே by the vector of its Fourier coefficients (obtained byࢉ
applying the DTFT to ࢉே, when ܰ → ∞) and following a 
reasoning similar to that in [12]. Matrix ࡷఌ is a ܲ ൈ ܲ 
matrix of elements ሾܭఌሺ݁௝ఠ்ሻሿ௣,௤ given by the DTFT of the 

cross-correlation of sequences ቂߝ௣ሾ1ሿ, … ,  ௣ሾܰሿቃ andߝ

ቂߝ௤ሾ1ሿ, … ,  ,௤ሾܰሿቃ. With the choice (7) of sampling filtersߝ

ఎଶߪఌ is ൫ࡷ ܶଶ⁄ ൯diagሼ| ଵܵሺ߱ ൅ ߱ଵሻ|ଶ, … |ܵ௉ሺ߱ ൅ ߱௉ሻ|ଶሽ. 
Furthermore, the choice of an ideal pulse shape ݃ሺݐሻ, in the 
sense that ܩሺ߱ሻ ൌ 1 for ߱ ∈ ൣെࣜ௚, ࣜ௚൧ and ܩሺ߱ሻ ൌ 0 

everywhere else, determines that matrix ࢃሺ݁௝ఠ்ሻ is an 
ܲ ൈ ܲ identity matrix. This leads to further simplification of 
(13) to (14).  

In (14) we use ࣂ ൌ ሾ߬ଵ, … , ߬௄, ,ଵୖߙ … , ௄ߙ
ୖ, ଵ୍ߙ , … , ௄ߙ

୍ ሿ୘ 
and ߤ௣ሺ݁௝ఠ்ሻ ൌ ∑ሺ݁௝ఠ்ሻݔ ௞݁ߙ

ି௝൫ఠାఠ೛൯ఛೖ௄
௞ୀଵ  to determine 

the elements of the FIM. Particularizing it for ܭ ൌ 1,  
 

ሻࣂሺࡶ  ൌ ଶ௉஍ೣ

ఙആ
మ

22 2 2
1 3 0 0

0 1 0

0 0 1

P T  
 
 
 
 

.              (15) 

 

With (15), the equations of Theorem 1 can be easily derived. 
Moreover, it can be shown that for ܭ ൒ 2, for well 
separated multipaths, the CRB for the time delay and 
amplitude of any ݇th component is also given by Theorem 1. 
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