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PERFORMANCE BOUND FOR TIME DELAY AND AMPLITUDE ESTIMATION
FROM LOW RATE SAMPLES OF PULSE TRAINS

Ciprian R. Comsa "7 Alexander M. Haimovich '

" Telecommunications Dept, “Gheorghe Asachi” Technical University of lasi, Romania
"ECE Dept, New Jersey Institute of Technology, USA

ABSTRACT

The problem considered is estimating the time delays and
amplitudes of a train of pulses of known shape. It was
recently shown that in the absence of noise, if the pulses are
short relative to the interval separating them, the stream of
pulses can be sampled at rates lower than the Nyquist rate
without any loss of information. This paper investigates the
performance of time delay and amplitude estimation from
samples taken at low (sub-Nyquist) rates when the stream of
pulses is affected by additive white Gaussian noise. To this
end, the Cramér-Rao bound (CRB) is developed. For a
particular setup, the CRB for time delay estimation is
inverse proportional to the cube of the sampling rate, while
the CRB for amplitude estimation is inverse proportional to
the sampling rate. Numerical simulations confirm this result.

Index Terms — Cramér-Rao bound, time delay and
amplitude estimation, low rate sampling, pulse train

1. INTRODUCTION

In many applications, signals can be uniquely described by a
small number of parameters. For example, in radar and
wireless communications signal can be constituted of a
stream of short pulses of known shape, stream that is
defined by the time delays and amplitudes of the pulses.
Estimation of these parameters is the subject of this work.
Time delay estimation and amplitude estimation are
conventionally performed from samples taken at rates
higher than the Nyquist rate, which is twice the signal’s
bandwidth. This approach is required when the only
knowledge on the signal is that it is bandlimited. Other
priors on signal structure can lead to more efficient
sampling. An interesting class of structured signals was
considered in [1], where the signals have a finite number of
degrees of freedom per unit time. These signals were termed
to have finite rate of innovation (FRI). A special case of FRI
signals consists of a stream of K pulses of known shape per
time interval T. For such a stream, any of its segments of
length T is uniquely determined by no more than 2K
parameters, i.e., K time delays and K amplitudes. It is then

said that the signal’s local rate of innovation is finite and
equals 2K /T.

For streams of pulses of short duration relative to the
reference interval T, standard sampling methods require
very high sampling rates. However, the rate of innovation
per interval T is much smaller than the number of samples
taken at the Nyquist rate. This observation was exploited to
set the grounds for sampling at rates lower than the Nyquist
rate. To this end, a mechanism to sample at low rates
streams of Diracs can be found in [1], and the references
therein. A scheme for recovering the original stream from
the samples was also proposed. More recent work, [2, 3],
generalizes the approach to sampling at low rates streams of
pulses of known arbitrary shape, rather than just Diracs, by
considering a multichannel sampling setup. Although the
proposed multichannel sampling scheme allows perfect
recovery of the original signal from its noiseless samples, it
was found in [4] that in the presence of noise the
performance of the signal recovery from low rate samples
deteriorates significantly relative to the signal recovery from
samples taken at the Nyquist rate. However, with low rate
sampling, increasing the sampling rate above the rate of
innovation brings substantial performance improvement.

This work considers low rate sampling of streams of
pulses as in [2, 3], but rather than recover the signal itself,
the goal is to estimate specific signal parameters,
specifically, delay and amplitude. The signal recovery in [2,
3] is equivalent to estimating all the unknown signal
parameters, e.g., time delays and corresponding amplitudes.
By contrast, estimation of individual parameters may be
performed independently, e.g., delay estimation does not
require the estimation of amplitudes, and thus its
performance may vary with system parameters differently
than that of signal recovery.

The paper is organized as follows: Section 2 provides the
system model for a multichannel sampling scheme. In
Section 3, CRB expressions are developed for TDE and
amplitude estimation. Discussion of our results vis-a-vis
other work is included. Section 4 contains numerical results,
and conclusions wrap up the paper.



2. SYSTEM MODEL

The problem considered is estimation of a vector @ that
parameterizes a FRI segment x(t) of length T, from
samples taken at low rates from a noisy observation y(t).
To give practical relevance to the problem considered, x(t)
is viewed as the product of transmitting a signal x;(t)
through a multipath channel h(z,t) = ¥X_, a,6(t — 1),
where «aj, are the complex valued amphtudes and 7, the
time delays associated with each propagation path. The
transmitted signal x1(t) consists of a train of pulses. That is,
a pulse of known shape g(t) is emitted periodically at a
constant rate 1/T, after being modulated by some arbitrary,
known sequence xy[n]. Vector 8 contains then the time
delays and amplitudes as the unknowns that parameterize
the signal x(t). It is assumed that Ty > T > 1y, for any
k € {1,...,K}. Also, the multipath channel is assumed time
invariant. Thus, the amplitudes «; do not change from one
interval I, = [(n — 1)T,nT] to another. Additionally, the
received signal is shift invariant, i.e., the time delays also do
not change from one interval I, to another, with respect to
the beginning of each interval. The received signal is then a
complex valued, noisy semi-periodic train of pulses:

ZN:ZK;ak[n (t—7,—nT)+n(1), (1)

n=1 k

where ay[n] = ayxy[n] and N =T,/T. The signal is
defined by K time delays 1), and by NK amplitudes a;[n].
However, any segment of x(t) of length T is defined by
only K time delays and K amplitudes. Moreover, with
knowledge of the sequence {x)[n]}, the whole observed
signal x(t), of length Ty, is defined by K time delays 7; and
K amplitudes a;,. Thus signal x(t) is FRI.

The received signal is affected by complex valued
additive white Gaussian noise (AWGN), n(t), of power
spectral density (PSD) @, . For later use, let o} = ®,/T
denote the power of the noise after passing through an ideal
low pass filter of cut-off frequency 1/2T.

The system model for the problem considered is depicted
in Fig. la. The continuous-time signal y(t) is passed
through a Sampling block to obtain the set of samples c.
Based on samples ¢, an estimate of 0 is obtained with the
Estimation block. For the Sampling block a multichannel
structure is considered. With a multichannel sampling setup
the signal y(t) is convolved with P different functions
si(=t), ..., sp(—t), and the output of each channel is
sampled at a rate 1/T, [2, 3]. The set of samples is given by

cpln] = f y()sp(t —nT)dt, p=1,..,P. )

The system is said to have a total sampling rate P/T.

. c[m] X A T,a
Sampling Estimation

?)- t=mT
xg(t) __[: 7( cp[m]|  ¢[m]
— s, (—=t)

t=mT

g/\ | Lo il [N

| T
7, T, t t

Fig. 1. a). System model; b). Filter-bank sampling block.

Two main multichannel sampling methods were proposed
recently in the literature, i.e., the filter-bank method in [2]
and the modulator-bank method in [3]. The modulator-bank
sampling scheme can be used to treat different FRI signals
under the assumption that the pulse g(t) is compactly
supported and pulses do not overlap boundaries of interval
[,. In contrast, the filter-bank sampling scheme can
accommodate arbitrary pulse shapes g(t), including
infinite-length functions. Also, the filter-bank scheme is
well suited for sampling long (N — o) semi-periodic
signals of form (1). For the rest of the paper, the filter-bank
sampling is assumed, with the note that similar analysis can
be carried out for the modulator-bank scheme.

The filter-bank scheme is illustrated in Fig. 1b. On each
branch, the signal is filtered by s;(—t), followed by actual
sampling at a rate 1/T. The signal model is handled easier
in the frequency domain. For long observation intervals,
Ty = oo, the discrete-time Fourier transform (DTFT),
C,(e7°T) £ ¥, czcp[n]e™®"T, can be applied. With this,
(2) becomes

0

G =13 ¥V (0=Fm)s;(0-Fm). @

m=—0

where Y(w) = X(w) + N (w) and X(w), Y(w), N (w), and
Sp(w) denote the Fourier transforms of x(t), y(t), noise
n(t), and sampling filters s;(—t), respectively. Note that,
based on (1), X(w) = G(w) XK_, Ax(e/®T) e /¥ where
G (w) is the Fourier transform of g(t).

Focusing, as proposed in [2], on sampling filters with
finite support in the frequency domain, e.g., contained in
the range F = [-Pn/T, Pr/T], (3) becomes

GE =13 Siera)Vwre). @

g=1

where w, =2n(q—1—P/2)/T. Note that all the



expressions in the frequency domain are 21t /T periodic and
w is restricted to the interval [0, 27t /T).

If ¢ is a column vector collecting C, (e7%T) from all the P
sampling channels,

c=Sy=SGN(t)Da + S, Q)

where § is a P X P matrix of elements %S{; (w + a)q),
G = diag{G(w + w;), ...G(w + wp)}, N(z) is a PXK
matrix of elements e /®a% D = diag{e /%71, ...e J¥Tk},
al = [A,(e7°T), ... Ax(e/*T)], A,(e’®T) is the DTFT of
ai[n], y is a column vector collecting elements Y(w + wq),
and 7 is a column vector collecting elements NV (w + w,).
Although it not explicitly evident in the notation, note the
dependence on e/®T of the all the arrays in (5) except N(T).
Also note that the unknown time delays 7 are embedded in
N(t) and D, while the unknown amplitudes ay are in the
amplitudes A, (e/“T). Matrices S and G are known.

We briefly review the operations performed within the
Estimation block, as proposed in. First, (5) is normalized by
W1, with W =SG. Thus, let u =W lc=N(r)Da +
W~15. By denoting b = Da and ) = W15 (dependence
on e/“T continues to be implicit) and taking the inverse
DTFT,

u[n] = N(©)b[n] + 7[n]. (6)

Matrix N(t) has a Vandermonde structure and thus
super-resolution techniques, [5, 6], traditionally used in
spectral estimation, can be employed with (6) to estimate the
time delays 7, where the number of multipaths K is a priori
known, [2]. Once t is known, the vector a can be found
using the linear relation @ = D™*NT(t)u, where is the
Moore-Penrose pseudo-inverse of N(t). Further, with
knowledge of the sequence {x,[n]}, the amplitudes a; can
be determined.

In the absence of noise m, the filter-bank sampling
scheme supports recovery of the signal x(t) only if the
number of samples P per interval T is at least 2K. The
number of samples cannot exceed the number at Nyquist
rate, 2TB,, where By is the single side bandwidth of the
pulse shape (if band-limited), [2, 7]. Combined, these lead
to condition 2K < P < 2TB,, for the filter-bank scheme to
work.

Also note that the values of u[n] are obtained in (6) by
taking the inverse DTFT of W~l¢. Thus, the matrix W
needs to be stable invertible. One example of sampling
filters satisfying this condition is

T,forw € [wp, wp + 27T/T]
0, otherwise.

S,(@) ={ )

3. CRAMER-RAO BOUND

The performance of an estimate & of a vector parameter 6
from a set of measurements is typically measured by its
mean squared error (MSE). A lower bound on the MSE is
often used instead to gain insight into the factors affecting
the MSE. The Cramér-Rao bound (CRB) is a lower bound
on the MSE of any unbiased estimate of 8. For the problem
at hand, the available measurements are the samples c,
obtained as (5) by a filter-bank low rate sampling scheme
applied to the FRI signal y(t) of (1). Since {x[n]} in (1) is
assumed known, the unknown parameter vector is 0 =
(T4, 0, T O, oo, R, al, oo, ak]T, where aR = Re{a;} is the
real part of a; and a! is the imaginary part of a;. The CRB
on the MSE of an element 68; of @ is given by the i-i element
of a matrix €(@), i.c., CRB(6;) = [C(0)];;. By definition,
the matrix C(0) is the inverse of the Fisher Information
Matrix (FIM), whose elements are given by [8],

221In f(c; e)}

U(e)]i,j = IE{ a0, 09]_ (8)

where f(c; @) is the probability density function (pdf) of the
sample vector ¢, parameterized by 6.

The CRB for the signal reconstruction from low rate
samples was discussed in [4]. In contrast, we are concerned
here with parameter estimation, rather than estimation of the
signal itself. Insight into the performance is developed from
closed-form results for a particular setting, as stipulated in
Theorem 1 below.

We make the following two assumptions:

(A1) The pulse shape shape g(t) is ideal, in the sense
that G(w) =1 for w € [—ZﬂBg, ZﬂBg] and G(w) =0
everywhere else.

(A2) @, (w) = |x(e/®T) ? where x(e/%T) is the DTFT
of the sequence {x[n]}, and @, (w) is assumed constant and
known within the frequency range of interest. With this, we
define the signal to noise ratio (SNR) as ®,(w)/a;;. Note
that if {x[n]}_, is a long bipolar sequence, where the +1
and —1 symbols are equiprobable, it can be further shown
that &, = N, [9].

Theorem 1. Let € in (5) consist of the low rate samples of a
semi-periodic stream of pulses in AWGN noise, of form (1).
Under assumptions (A1) and (A2), with the choice (7) of the
sampling filters, and for a multipath free environment, i.e.,
K =1, the CRBs for delay and amplitude estimation from
low rate samples are:

3 1 T2
CRB(Y) = 32 SNRIa T PP )
1

Proof: See Appendix for a sketch of the proof.
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Discussion. The CRB expression (9) shows that the
performance of delay estimation improves with the SNR,
i.e., the CRB decreases as the SNR increases. The same
observation holds for the CRB of amplitude estimation (10).
Interestingly, the CRB of delay estimation decreases with
the cube of the number of sampling filters, i.e., it is
proportional to P~3. This means that increasing the number
of sampling filters quickly improves the performance of
delay estimation. In contrast, the CRB of amplitude
estimation is proportional only to P~!. If we denote
Bp = P/T, and employ the assumption that |a;|? = 1, the
CRB can be written as (3/2n2B2)(1/Bp T SNR) for delay
estimation and 1/BpT SNR for amplitude estimation. With
these definitions, the expression for the CRB has the same
form as the CRB for delay estimation in continuous signals
developed in [10], where the term BpT SNR is referred to as
postintegration SNR. This is justified by the fact that the
product BpT is the processing gain due to the time
bandwidth product of the signal. Thus we observe that the
variation with P3® of the CRB of delay estimation can be
split into the effect of bandwidth PZand the effect of
processing gain P. In the case of amplitude estimation, the
CRB is influenced only by the SNR gain.

4. NUMERICAL EXAMPLES

The MSE of delay estimation (CRB and maximum
likelihood simulations) as a function of SNR is shown in
Fig. 2 for N = 100 symbols, P = 10 sampling channels,

E‘ .
70}
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T~
~
\y
—-80 -
[£a]
w
=
90
CRB(7{,P = 20
-97.2% (71 )
100
2 5 10 15 p 20

Fig. 4. Delay estimation errors as function of the number of
sampling filters.
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Fig. 5. Amplitude estimation errors as function of the

number of sampling filters.

a; =1, and T = 10us. Results shown are averaged over
1000 runs in which the noise have been chosen randomly
(source location was kept fixed). It may be noticed that at
high SNR, the MSE from simulations approaches
asymptotically the CRB. This confirms that the CRB given
by (9) is a tight lower bound. With the logarithmic scaling
used in Fig. 2, the CRB decreases linearly with slope -3. In
contrast, at low SNR, maximum likelihood estimation
experiences a threshold effect, i.e., the MSE increases
steeply. This is because, as the SNR decreases, the
estimation enters a so called “large-errors” region, where the
noise values become dominant over the signal. For the given
FRI problem addressed in this work, time delay values are
bounded by T andso are the errors, resulting in the plateau
region evident at the low end of the SNR scale. In Fig. 3, it
is observed that for the same setup as delay estimation, the
MSE of amplitude estimation varies linearly with slope -1.

Based on (9) and (10), the performance of delay
estimation improves with P~3 when P varies from 2K to
2TB;, while the amplitude estimation performance
improves only with P~1. When P = 2T B, the estimation
performance of the filter-bank scheme equals the one of a
single filter scheme working at Nyquist rate [1]. This can be
observed in Fig. 4, and Fig. 5, where for low rate sampling
the simulated MSE and CRB are plotted against the number
of sampling filters P. The CRB for Nyquist rate for TB, =
10is the same as the CRB for low rate sampling with
P = 20.



5. CONCLUSIONS

Performance of time delay and amplitude estimation from
low rate samples of pulse trains has been addressed. In
particular, the CRB expression for the case of using a filter-
bank sampling scheme was developed. With some
simplifying assumptions, closed form expressions were
determined for multipath free signal. The estimation
performance in noise was shown to deteriorate significantly
if the number of samples taken is the one indicated by the
rate of innovation rather than by the Nyquist rate.
Specifically, with the simplifying assumptions considered,
the CRB is inverse proportional to the cube of the number of
sampling filters for delay estimation and to the number of
sampling filters for amplitude estimation.

6. APPENDIX

Due to space considerations, we can provide in this
appendix only a sketch of the proof of Theorem 1. We start
by expressing the pdf f(c; @) used in (8) in terms of the
signal model (1)

1 S NHp—1 .
c;0) = e~ (en—EN)" Ky (en—FN) )
f(e:6) det(r[KgN) (D

where ¢y = [¢"[1],...,¢"[N]], @y = [E"[1], .., @"[N]],
and the observation interval is limited to [0,NT). The
matrix K, denotes the NP X NP covariance matrix of the
noise Vector el =[£7[1], ..., €"[N] ]. Equation (15.52) from
[8] is applied to (11), together with the observation that the
covariance matrix K., does not depend on parameter 6
[11], to reduce (8) to

opitl 0
U(e)]i,,:zrze{ 59, K a‘;”}— (12)
/T
a(uH d
25 f Re {%( joT) K71 (W")( JwT)} = (13)
—-1t/T
T e 1 ou; au
_ _ (4 jwT\ _ P, jw
T f Z Re{ae () g, ¢’ T)}d‘“' (14
-n/T P=1 77 ¢

Term (13) is obtained from (12) by replacing the data vector
cy by the vector of its Fourier coefficients (obtained by
applying the DTFT to ¢y, when N = o) and following a
reasoning similar to that in [12]. Matrix K, is a P X P
matrix of elements [K, (ej‘”T)]p'q given by the DTFT of the

cross-correlation  of sequences |[g,[1],. sp[N]]
[eq[l], &g [N]]. With the choice (7) of sampling filters,
K. is (02/T?)diag{|S; (@ + wy)|? ...1Sp(w + wp)[?}.

Furthermore, the choice of an ideal pulse shape g(t), in the
sense that G(w) =1 for w € [—Bg, Bg] and G(w) =0

everywhere else, determines that matrix W(e/®T) is an
P X P identity matrix. This leads to further simplification of
(13) to (14).

In (14) we use 0 = [ty,..,7g a, ..., a8, ai, ..., ak]”
and p,(e/*T) = x(e/*T) TK_; are ’(“”“’P)’k to determine
the elements of the FIM. Particularizing it for K = 1,

Prilaf 377 10 0
2PD, | —— - LT d-m
J(0) = —; 0 T 0] (15)
0'77 !
0 10 1

With (15), the equations of Theorem 1 can be easily derived.
Moreover, it can be shown that for K > 2, for well
separated multipaths, the CRB for the time delay and
amplitude of any k™ component is also given by Theorem 1.
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