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ABSTRACT 

 
The problem addressed is source localization via time-difference-
of-arrival estimation in a multipath channel. Solving this 
localization problem typically implies cross-correlating the noisy 
signals received at pairs of sensors deployed within reception range 
of the source. Correlation-based localization is severely degraded 
by the presence of multipath. The proposed method exploits the 
sparsity of the multipath channel for estimation of the line-of-sight 
component. The time-delay estimation problem is formulated as an 

1-regularization problem, where the 1-norm is used as a channel 
sparsity constraint. The proposed method requires knowledge of 
the pulse shape of the transmitted signal, but it is blind in the sense 
that information on the specific transmitted symbols is not required 
at the sensors. Simulation results show that the proposed method 
delivers higher accuracy and robustness to noise compared to 
conventional or even super-resolution MUSIC time-difference-of-
arrival source localization methods. 
 

Index Terms — Source localization, time-difference-of-
arrival, sparse multipath channel, 1-regularization 
 

1. INTRODUCTION 
 
Accurate localization of a signal source is a problem of interest in 
various applications, [1]. The current work addresses the problem 
of localizing a signal source by sensors distributed over an area. 
Typically, the source location is estimated in two stages. During 
the first stage, a measure of the received signal, usually the 
propagation time-delay, is estimated at each sensor. In the second 
stage, the actual location is computed from the time delay 
estimates. Time-delay-estimation (TDE) becomes challenging in 
multipath propagation environments, where the line-of-sight (LOS) 
signal component becomes obscured by multipath reflections.  
Hence, accurate localization requires techniques capable of 
resolving the LOS signal component. When the transmitted signal 
and its transmission time are known at a sensor, the time of arrival 
(TOA) can be estimated by a variety of techniques. A classical 
method is to estimate the TOA from the timing of the peak of the 
cross-correlation (CC) between the transmitted and received 
signals, [2]. The resolution of the TOA estimated in this case is 
limited by the width of the main lobe of the time autocorrelation 
function of the transmitted signal. This limitation makes the 
method unable to distinguish between the LOS signal and a 
reflected component when they are spaced closer than the 
resolution limit. Over the years, various techniques have been 

proposed to overcome this limitation.  An example is the root-
MUSIC method, belonging to the larger class of subspace methods, 
also referred to as  super-resolution methods due to their high 
resolution capabilities, [3]. 

Recently, some potentially even higher resolution estimation 
techniques have been proposed, based on the observation that 
many propagation channels associated with multipath 
environments tend to exhibit a sparse structure in the time domain, 
i.e., the number of multipaths is much smaller than the number of 
samples of the received signal. This sparsity has been exploited in 
TOA estimation, [4], and other TOA-related applications, such as 
compressed channel sensing, [5, 6], or underwater acoustic channel 
deconvolution, [7]. TOA estimation requires the transmitted signal 
to be known to the sensors. In many applications, the source may 
be non-cooperative or otherwise the signal and timing information 
may not be available at the receiving sensors. The common 
approach for such a case is to take one of the sensors as reference 
and measure the time-difference-of-arrival (TDOA) at each of the 
other sensors with respect to the chosen reference sensor. A 
method for TDOA estimation for sparse non-negative acoustic 
channels is presented in [8]. 

In this paper, a method for high resolution TDOA estimation 
for complex-valued sparse multipath channels is developed and 
applied to source localization. The proposed method casts the 
TDOA estimation as a convex optimization problem that can be 
efficiently solved by conventional algorithms, [9]. In particular, the 
problem is formulated as an ℓ1-regularization problem, i.e., the ℓ1-
norm is used to impose a sparsity-constraint on the channel. While 
the proposed approach does not require the transmitted signal to be 
known at the sensors side, as is the case in [4-7], the pulse shape is 
assumed known. Also, for simplicity, the reference sensor is 
considered single-path, i.e., the reference sensor receives only the 
LOS signal. In [10], TOA estimation is carried out also based on 
knowledge of only the pulse shape. Unlike our approach, where 
sparsity is exploited to improve localization performance, in [10] 
the sparsity of the channel is applied to reduce the sampling rate of 
the received analog signal. The actual time delay estimation is 
performed by a subspace method.  

The remainder of this paper is organized as follows. Sec. 2 
introduces the signal model. In Sec. 3, the ℓ1-regularization 
method for TDOA estimation is proposed and discussed. In Sec. 4, 
numerical simulations are conducted to compare the performance 
of our method with other techniques for source localization. 
Conclusions are listed in Sec. 5. 
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2. SIGNAL MODEL

With the localization problem, the unknown -  location, , of a 
signal source has to be estimated based on the signals collected by 
a number  of sensors. The source is assumed to transmit an 
unknown lowpass signal, , of bandwidth . The receiving 
sensors are widely dispersed within a surveillance area, at arbitrary 
but precisely known locations, . The signal received at any 
sensor is expressed as the convolution between the transmitted 
signal, , and the channel impulse response (CIR), : 

, (1) 

where  is additive white Gaussian noise (AWGN), with 
variance . The multipath channel is modeled 

=1
kP

p

, (2)

where  denotes the delta function,  is the number of paths of 
the channel observed at sensor , and  is the complex valued 
channel gain. The channel parameters  and   are unknown to
the sensors.

The localization method proposed here is based on the 
estimation of the TDOA at pairs of sensors, 

. The LOS propagation delay between the source located at 
 and any sensor at , , is proportional to the source-to-

sensor distance: ,
where  is the speed of light. A TDOA measurement localizes the 
source on a hyperboloid with a constant range difference between 
the two sensors,  and . Since the source can occupy only one 
point on the hyperbolic curve, TDOA measurements from the other 
sensors are used to resolve the location ambiguity. Processing is
carried out at a fusion center, assumed linked via ideal
communication links to the sensors. Ideal time synchronization is 
assumed between the sensors. One of the sensors, say , is 
chosen as reference such that the sensor pairs used for TDOA
estimation are , for .

3. TDOA ESTIMATION FOR SPARSE CHANNELS

The focus of this paper is on improving the TDOA resolution and 
accuracy and, implicitly, the source localization resolution and 
accuracy. Recent work has shown that channel estimation can be 
improved through sparsity regularization, [4-7]. In this section, we 
propose an 1-regularization method for TDOA estimation,
exploiting the sparsity of multipath channels. 

3.1. 1-regularization method

Assuming for simplicity of presentation that the time-delays of the
CIR are integer multiples of the sampling rate, define the received 
signal vector , the CIR vector 

, and the noise vector 
, where ,   and  are the 

lengths of the received signal vector, channel and transmitted
signal vector, respectively. With these definitions, the signal model 
(1) can be written  

, (3)

where  is the  matrix relating the received signal 
vectors  to the channel vectors . Since typically , the 
CIR, , is a sparse vector. Sparsity of the CIR vector can be 
enforced by minimizing its -norm, i.e., the number of non-zero 
elements. Minimization of the -norm of  is a non-convex 
optimization problem and it is NP-hard, which means that no 
known algorithm for solving this problem is significantly more 
efficient than an exhaustive search over all subsets of entries of . 
In lieu of the -norm, an approximation, e.g., the -norm, can be 
used with . While smaller  implies better 
approximation of the -norm,  is often used because 
minimization of the 1-norm is a convex problem, and it can be 
efficiently solved by standard algorithms. Thus, assuming that the 
transmitted signal, and hence the matrix , are known, the CIR 
estimation can be formulated as an 1-regularization problem [7], 

, (4)

where  denotes the -norm of vector .  
The estimate of the CIR can be used to find the TOA as the 

timing of the earliest peak of the CIR. We now seek to formulate 
the problem of TDOA estimation. The TDOA has to be determined 
from a sufficient statistic involving signals received at two sensors. 
A common such statistic is cross-correlation of the received 
signals, implying that the TDOA has to be estimated from the 
cross-correlation of the CIR of two channels, e.g., from . For 
a single channel, the TOA is determined as the time of the first 
path of the estimated channel. However, when cross-correlating 
two CIR’s, the time of the first path in the cross-correlation does 
not necessarily correspond to the TDOA. Assuming that for each 
of the channels, the line-of-sight path is the strongest, the TDOA 
can be found from the time of the strongest component of the 
cross-correlation. Here, to simplify the situation, we assume that 
one of the sensors does not experience multipath, and use this 
sensor as reference for TDOA estimation. In this case, the TDOA 
is given by the delay of the first time component of . Cross 
correlating the signal received at sensor  with the reference sensor 
, and dropping the noise term for simplicity, we have: 

, (5)

where ,  is the unitary discrete Fourier transform 
(DFT) matrix, and  is the cross-correlation sequence of the 
received signal vectors  and . Let  be the 
number of elements of the vector . The matrix  is a  
transformation matrix relating the frequency domain cross-
correlations of the received signals, , to the time-domain cross-
correlations of the channels, . It can be verified that 

, where  is the power spectral density of the
transmitted signal padded with  zeros. 

The problem of TDOA estimation can be formulated as an 1-
regularization problem: 

, (6)

which may be efficiently solved with conventional convex 
optimization algorithms, [9]. Note the presence of the auto-
correlation of the transmitted signal within the cost function. The 
proposed TDOA method utilizes auto-correlation information (for 
uncorrelated symbols, pulse shape information is sufficient), but 
the method is blind in the sense that it does not require knowledge 
of the transmitted symbols. 
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Formulating (3) with a denser sampled channel has the 
potential of a higher resolution TDOA estimate, but increases the 
complexity of the optimization algorithms. An iterative grid 
refinement approach is adopted to keep the complexity of the 
optimization algorithms in check. Initially, (6) is solved for the 
samples corresponding to a desired range of delays. A refined grid 
is obtained by taking a second set of samples focusing on a range 
of delays that are indicated by the first iteration to contain 
multipath. This corresponds to a higher sampling rate of the 
smaller area of interest. Samples of the second set are obtained by 
interpolating the original samples. The transformation matrix  is 
also recalculated to match the refined sample support of the 
correlation sequences. With the refined grid, (6) is solved again 
and a new TDOA estimate, of higher resolution, is obtained. The 
grid refinement procedure can be repeated until a desired 
resolution is attained. 
 
3.2. Discussion 
 
The cost function to be minimized in ℓ1-regularization problems, 
e.g., (4) and (6), has two terms: the first term is a measurement 
fidelity (or reconstruction error); the second term  is a 
regularization (or penalization) term, that imposes sparsity on the 
estimate by using its 1-norm. The factor  is a regularization 
parameter. The sparsity of the solution is governed by the choice 
of , which balances the fit of the solution to the measurements 
versus sparsity, [11]. A small regularization parameter corresponds 
to a good fit to the measurements, while too much regularization 
(over-penalization through a large ) produces sparser results, but 
may fail to explain the measurements well. A number of methods 
have been studied in the literature for automated choice of  (see 
[12] and the references therein). However, in practice an optimal 
value of  is difficult to select by any of these methods, and usually 
the choice of  resorts to semi-empirical means, [11]. 

It is known that super-resolution methods, such as root-
MUSIC, have the capability of asymptotically achieving optimal 
performance. However, in practice, with limited number of 
samples, or with highly correlated signal components, the accuracy 
performance often degrades away from the theoretical lower 
bounds, due to resolution limitations, [13]. In recent works, [7, 14], 
it was found that the ℓ1-regularization method may offer higher 
resolution than the super-resolution methods. Moreover, the sparse 
regularization has the advantage of producing good accuracy even 
at low signal-to-noise ratios (SNR), i.e., it exhibits good robustness 
to noise, as it has been noted in [14]. In fact it has been proved (see 
[15] and the references therein) that there is a fundamental 
connection between robustness and sparsity. Specifically, if some 
disturbance is allowed into the transformation matrix  or the 
measurements vector ,  finding the optimal solution in the worst 
case sense is equivalent to solving the problem in the ℓ1-
regularization formulation, which imposes sparse solutions. 

The ℓ1-regularization continuously shrinks the estimate 
elements toward  as  increases, leading to sparse solutions. 
However, the ℓ1-regularization shrinkage results in a small bias in 
the non-zero elements of the estimate, since the estimation of these 
elements is based on the measurement fidelity term, [16]. Thus 
solving the problem of estimating  from the measurements , 
(5), by employing an ℓ1-regularization formulation, (6), may lead 
to a sub-optimal solution for the non-zero elements of the estimate. 
However, despite this downside, with a reasonable choice of , the 
ℓ1-regularization method still produces better TDOA estimation   
 

 
Fig. 1. True and estimated multipath components. 

 
(and hence source localization) accuracy than conventional 
techniques, especially at low SNR, as demonstrated by the results 
presented in the next section. Moreover, the proposed method 
doesn’t necessary require knowledge of the number of the 
multipath components, as root-MUSIC does. 

When the power spectral density of the transmitted signal is 
flat across the frequencies of interest,  in (5) has the form of a 
DFT matrix. In this case, the sparse estimate can be found with 
fewer equations than in (6), reducing the required computational 
effort. A procedure for selecting a subset of equations among those 
in (6) and the sufficient number of equations in the subset to ensure 
that the solution is not altered, can be found in [17]. 

 
4. SIMULATION RESULTS 

 
In this section, we present some simulation results to demonstrate 
the performance of the proposed ℓ1-regularization method. For a 
typical setup, we show significant improvement in localization 
accuracy, compared to conventional methods, such as cross-
correlation and root-MUSIC. We considered a system in which a 
number  of sensors are approximately uniformly distributed 
around the source, on an approximately circular shape of radius 

. The source, which location is to be estimated, transmits a 
Gaussian Minimum Shift Keying (GMSK) modulated signal of 
bandwidth  that is received by the  sensors through 
different multipath channels. For each sensor , the 
TDOAs are measured relative to the chosen reference sensor, 

. The pulse shape is known at the sensors side and used to 
generate the auto-correlation of the transmitted signal. The wireless 
channels between the source and each of the sensors are modeled 
as (2). Specifically, a three-paths model is used, as in [4]. The first 
two paths are spaced well below the bandwidth resolution, while 
the separation between the second and the third path is higher, as it 
can be seen in Fig. 1. The only exception is the reference sensor 
assumed to be an AWGN channel, i.e., no multipath. The 
simulation scenario also employs the same noise level across 
sensors. For ℓ1-regularization, the regularization parameter  is 
chosen by semi-empirical means, as motivated in Sec. 3.2. 
Originally, when solving problem (6), a number of 500 received 
symbols are sampled 8 times the Nyquist rate. An oversampling 
factor of 50 is used for grid refinement as explained in Sec. 3.1.  
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Fig. 2. Source localization accuracy in noise. 
 

Fig. 1 shows the time-delays of the multipath components and 
their estimates at one of the sensors, for a received SNR of  
per sample. The TDOA is given by the earliest of these 
components. The estimate by the ℓ1-regularization approach with 
grid refinement is the closest to the true delays, when compared to 
the other methods considered. The result of the ℓ1-regularization 
without grid refinement is visibly biased due to the limited 
sampling rate. The CC and the root-MUSIC estimates show 
significantly larger errors particularly for the two close paths. The 
TDOA estimates are transformed, by multiplication with the 
known signal propagation speed, into range difference information 
for constructing a set of hyperbolic equations. The solution 
provided by these equations is the estimated location of the source, 
relying on the knowledge of the sensors locations. In the literature, 
several methods can be found for solving the hyperbolic equations. 
We adopt here a recent approach that involves convex relaxation 
techniques supported by standard, efficient semidefinite 
programming (SDP) [18]. 

Fig. 2 illustrates the localization performance, in terms of root 
mean square error (RMSE) against SNR, of the proposed methods 
in the aforementioned scenario. The RMSE is obtained from 
Monte Carlo simulations with 100 runs per SNR value. The plot 
shows better accuracy of the proposed method over CC and root-
MUSIC, at both high and low SNR. At high SNR, given the low 
separation between the first two multipaths, both CC and root-
MUSIC provide biased estimates due to their limited resolution 
capabilities, though root-MUSIC is better. The reason for the better 
accuracy at low SNR is that ℓ1-regularization is robust to noise, as 
discussed in Sec. 3.2. 

 
5. CONCLUSIONS 

 
A method for source localization via TDOA estimation in 
multipath environments was developed. The sparsity of the 
channels is exploited and a grid refinement procedure was 
formulated to improve the resolution of the TDOA estimation. The 
proposed technique compares favorably to the conventional cross-
correlation and root-MUSIC techniques, in terms of TDOA and 
source location accuracy estimation. For dense multipath 
environments the proposed method may succeed where 
conventional methods fail to resolve closely separated components. 
Therefore it is suitable for applications like source localization in 
multipath. Moreover, simulation results confirmed the noise 
robustness of the method. 
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