
Abstract — The problem addressed is source localization from 
time differences of arrival (TDOA). This problem is also referred 
to as hyperbolic localization and it is non-convex in general. 
Traditional solutions proposed in the literature have generally 
poor robustness to errors in the TDOA estimates. More recent 
methods, which relax the non-convex problem to a convex 
optimization by applying a semi-definite relaxation (SDR) 
method, were found to be more robust to TDOA errors than the 
traditional methods. However, the SDR methods are not optimal 
in general. In this paper, three convex optimization methods with 
different computational costs are proposed to improve the 
hyperbolic localization accuracy. The first method takes an SDR 
approach to relax the hyperbolic localization to a convex 
optimization. The second method follows a linearized formulation 
of the problem and seeks for a biased estimate of improved 
accuracy. The first two methods perform comparably when the 
source is inside the convex hull of the sensors. When the source is 
located outside, the second approach performs better, at the cost 
of higher computation. A third method is proposed by exploiting 
the source sparsity. With this, the hyperbolic localization is 
formulated as an 𝓵𝟏-regularization problem, where the 𝓵𝟏-norm 
is used as source sparsity constraint. Computer simulations show 
that the 𝓵𝟏-regularization can offer further improved accuracy, 
but at the cost of additional computational effort. 

Index Terms — Hyperbolic localization, time-difference-of-
arrival, sparse representation, 𝓵𝟏-regularization. 

I. INTRODUCTION 
Accurate localization of a signal source is a problem of interest 

in various applications, e.g., [1]. The current work considers 
source localization in a plane, by sensors that are distributed 
arbitrarily over the plane. Typically the source location is 
estimated in two stages. During the first stage, a measure of the 
received signal, usually the propagation time delay, is estimated 
at each sensor. In the second stage, the actual location is 
computed from the time delay estimates.  

Time delay estimation (TDE) becomes challenging in 
multipath propagation environments, where the line of sight 
(LOS) signal component becomes obscured by multipath 
reflections. Hence, accurate localization requires techniques 
capable of resolving the LOS signal component. When the 
transmitted signal and its transmission time are known at a sensor, 
the time of arrival (TOA) can be estimated by a variety of 

techniques. Conventional methods estimate the TOA from the 
timing of the peaks of the cross-correlation (CC) between the 
transmitted and received signals, [2], or of a temporal pseudo-
spectrum computed from the transmitted and received signals by 
super-resolution methods, such as MUSIC, [3]. Recently, some 
potentially even higher resolution estimation techniques have 
been proposed, based on the observation that propagation 
channels associated with multipath environments often tend to 
exhibit a sparse structure in the time domain, i.e., the number of 
multipaths is much smaller than the number of samples of the 
received signal. This sparsity has been exploited in TOA 
estimation and other TOA-related applications, [4, 5]. TOA 
estimation requires the transmitted signal to be known to the 
sensors. In many applications, the source may be non-cooperative 
or otherwise the signal and timing information may not be 
available at the receiving sensors. The common approach for such 
a case is to use one of the sensors as reference and measure the 
time-difference-of-arrival (TDOA) at each of the other sensors 
with respect to the chosen reference sensor. A method for high 
resolution TDOA estimation for narrowband sparse multipath 
channels was developed in [6].  

The focus of the current paper is on the second stage of non-
cooperative sources localization. For any pair of sensors, given 
their locations, the TDOA estimated at the first stage localizes the 
source on a hyperboloid with constant range difference between 
the two sensors. Since the source can occupy only a single point 
on the hyperbolic curve, TDOA measurements from the other 
sensors are used to resolve the location ambiguity. The process of 
finding a solution of the intersection of the hyperbolic curves is 
referred to as hyperbolic localization and is equivalent to solving 
a system of non-linear equations, [7].  

In the literature, there are mainly two traditional approaches to 
solve the hyperbolic localization problem. The first approach is 
based on the nonlinear least squares (NLS) framework [8] and 
implies finding the global minimum of a NLS objective function. 
Under the standard assumption that the TDOA estimates have 
Gaussian distribution, the global minimum of the objective 
function corresponds to a maximum likelihood (ML) location 
estimate, enjoying asymptotic optimality properties, [9]. Although 
optimum estimation performance can be attained, the algorithm 
converges to the correct solution only if it is initialized 
sufficiently close to the final solution. Otherwise, the estimate 
may be a local minimum, since the objective function may have 
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multimodal features, i.e., the problem is non-convex. This is 
illustrated in Fig. 1, where one realization of the multimodal 
objective function is shown for a case with 4 sensors. A second 
traditional approach is to transform the set of nonlinear equations 
into a set of linear equations by squaring them and introducing an 
intermediate variable, expressed as function of the source 
location, [7, 10-12]. A representative example of this approach is 
the two-step weighted least squares (WLS) method proposed in 
[7]. This method provides an approximation of the ML estimator 
for source location. However this approximation holds only when 
the estimation errors are small, [13]. 

A third, more recent approach to hyperbolic localization is to 
relax the non-convex problem to a convex one that can be 
efficiently solved by standard algorithms, [14]. This can be 
achieved by applying a semi-definite relaxation (SDR) method, 
[15]. While this approach doesn’t guarantee optimality, the 
solution is generally close enough to the optimal, to at least serve 
as initialization for a gradient algorithm solving. Moreover, the 
SDR approach has been found to be more robust to TDOA 
estimation errors than traditional approaches. In the literature, 
various SDR methods, each with its own advantages and 
drawbacks, were proposed to solve different variations of the 
hyperbolic localization problem, [9, 13, 16, 17].  

In the present work, three different methods are proposed to 
solve the nonlinear system of equations defining the hyperbolic 
localization problem. The proposed methods improve over 
existing methods in different scenarios, with different 
computational costs. The first method is an alternative to the 
WLS solution by formulating the hyperbolic localization problem 
as a constrained minimization and relaxing the quadratic relation 
between the intermediate variable(s) introduced and the source 
location. The second method is to seek a biased estimate instead 
of the conventional unbiased estimate produced by the WLS 
method. This method is developed in a more general biased 
estimation context discussed in [18] and is also formulated as a 
constrained minimization problem. Finally, the third method is to 
introduce a grid over the surveillance area and formulate an 
objective function related to the likelihood of the source to 
occupy a certain point on the grid. Exploiting the sparsity of the 
sources, the problem is formulated as an ℓ1-regularization, 
solvable by standard convex optimization algorithms, [14]. 

The remainder of this paper is organized as follows. Sec. II 
introduces the basic system model. In Sec. III – V, the three 
proposed methods for hyperbolic localization are presented. In 
Sec. VI, numerical simulations are conducted to compare the 
performance of the proposed methods.  Conclusions are listed in 
Sec. VII. 

II. SYSTEM MODEL

With the hyperbolic localization problem, the unknown 
location, 𝜉0 = [𝑥0,𝑦0]T, of a signal source has to be estimated 
based on 𝑀 − 1 TDOAs estimated by a number 𝑀 of sensors, 
𝑀 ≥ 3. The sensors are assumed dispersed within a surveillance 
area, at arbitrary but precisely known locations, 𝜉𝑘 = [𝑥𝑘 ,𝑦𝑘]T. 
Perfect time synchronization is assumed across sensors. One of 
the sensors, say the first, is used as reference. The estimates 
express the TDOA with respect to the reference sensor. It is 
further assumed that the TDOA estimates, 𝜏𝑘1, are available at a 
fusion center, where the location estimation is performed. 

Fig. 1. Non-convex realization of the localization objective 
function. 

The location of the source is estimated by converting the TDOA 
estimates into range differences, i.e., 𝑑𝑘1 = 𝑐𝜏𝑘1, for 𝑘 =
2, … ,𝑀, where 𝑐 is the speed of light. Denoting the true distance 
(noise free) value of 𝑑 by 𝑑g, the range differences are commonly 
modeled, [7], 

𝑑𝑘1 = 𝑑𝑘1
g (𝜉0) + 𝑛𝑘1, for 𝑘 = 2, … ,𝑀, (1) 

where 𝑑𝑘1
g = ‖𝜉𝑘 − 𝜉0‖2 − ‖𝜉1 − 𝜉0‖2, with ‖𝜉𝑘 − 𝜉0‖2 =

�(𝑥𝑘 − 𝑥0)2 + (𝑦𝑘 − 𝑦0)2 denoting the Euclidean distance 
between the source and sensor 𝑘. The noise term 𝑛𝑘1 is usually 
modeled as a zero mean Gaussian random process. The 
covariance of 𝒏 = [𝑛𝑘2, … , 𝑛𝑘𝑀]T is denoted by 𝑸𝑛 = 𝔼{𝒏𝒏T}, 
where 𝔼 is the expectation operator; 𝑸𝑛 is assumed known up to a 
scalar.  Note that because of the common reference, in reality 
matrix 𝑸𝑛 is not a diagonal matrix. However, it is a common 
practice in the literature to model the range difference estimation 
errors as independent across sensor pairs and thus assume 
𝑸𝑛 = 𝜎𝑛2𝑰𝑀−1, where 𝜎𝑛2 is the range difference variance of any 
pair of sensors and 𝑰𝑀−1 denotes the unity matrix of dimensions 
(𝑀 − 1) × (𝑀 − 1). 

For a number 𝑀 of sensors, a set of 𝑀(𝑀− 1) 2⁄  TDOA 
estimated values can be obtained, referred to as the full TDOA 
set. Instead, by using only one sensor as reference, a set of 𝑀 − 1 
TDOA estimates is obtained, referred here as the non-redundant 
TDOA set. It was shown in [19] that if the reference sensor is 
properly chosen, the non-redundant TDOA set can result in the 
same localization accuracy as the full set. A procedure for 
properly choosing the reference sensor can be developed based on 
the Cramer-Rao lower bound expression, [16, 19]. In the present 
work, the proper choice of the reference sensor is assumed. 

III. AN SDR METHOD FOR HYPERBOLIC LOCALIZATION

In this section, an SDR approach is proposed to solve for the 
source location 𝜉0 estimation from the system of non-linear 
equations (1). First, both sides of equality (1) are squared and the 
resulting terms rearranged. By introducing three intermediate 
variables,  

𝜌 = ‖𝜉1 − 𝜉0‖2,  𝜈 = 𝜌2,  and  𝛾 = ‖𝜉0‖22 , (2) 



   

and denoting the noise term 𝑒𝑘 = 𝑛𝑘1(2‖𝜉𝑘 − 𝜉0‖2 + 𝑛𝑘1), the 
following linear equations are obtained for 𝑘 = 2, … ,𝑀: 

 
 (𝑑𝑘12 + 2𝑑𝑘1𝜌 + 𝜈) − (‖𝜉𝑘‖22 − 2𝜉𝑘T𝜉0 + 𝛾) = 𝑒𝑘  . (3) 

 
By denoting the left hand side of (3) as Λ𝑘(𝜉0), the dependence 
on  𝜌, 𝜈, and 𝛾 being implicit, and letting 
𝚲(𝜉0) = [Λ2(𝜉0), … ,Λ𝑀(𝜉0)]T, 𝒅 = [𝑑2, … ,𝑑𝑀]T, and 𝝃 =
[𝜉2, … , 𝜉𝑀]T, it can be verified that  

 
  𝚲(𝜉0) = trace{𝒅T𝒅 − 𝝃T𝝃 + (𝜈 − 𝛾)𝑰𝑀−1} + 2�𝜌𝒅+ 𝜉0T𝝃�. (4) 
 

Then the source location 𝜉0 can be estimated by formulating 
the constrained optimization problem  
 
  minimize 

𝜉0,𝛾,𝜌,𝜈
‖𝚲(𝜉0)‖𝟐, (5) 

                 

                                  subject to (2). 
 

The minimization formulation (5) is non-convex, but it is 
amenable to SDR, i.e., the quadratic constraints in (2) can be 
relaxed by SDR, [15]. Thus, instead of (2), the following 
constraints are imposed: 
 

 𝜌 = ‖𝜉1 − 𝜉0‖2,  �1 𝜌
𝜌 𝜈� ≽ 0,  �

𝑰2 𝜉0
𝜉0T 𝛾 � ≽ 0, (6) 

 
where 𝑿 ≽ 0 denotes positive semidefinite. With this, the 
localization problem reduces to an semidefinite programming 
(SDP), i.e., a convex minimization problem, solvable by standard 
convex optimization algorithms, [14], 
 
  minimize 

𝜉0,𝛾,𝜌,𝜈
‖𝚲(𝜉0)‖𝟐, (7) 

                 

                                  subject to (6). 
 
Note that formulation (7) is similar to that in [16], where a 

minimax formulation was used, i.e., ‖𝚲(𝜉0)‖∞ = max 
𝑘=2,..,𝑀

 |Λ𝑘(𝜉0)| 

was minimized to estimate 𝜉0, subject to the same constraints. 
However minimizing the ℓ2-norm is equivalent to the LS 
formulation, which is known to be optimal given the Gaussian 
distribution of the TDOA estimates. Indeed, the simulation results 
in Sec. VI confirm that the ℓ2-norm minimization can offer better 
accuracy than the minimax formulation.  

IV. MXTM METHOD FOR HYPERBOLIC LOCALIZATION 
The aim of this section is to improve the localization accuracy 

over the traditional methods by incorporating the linearized 
version of the hyperbolic localization problem (traditionally 
solved by WLS), into a biased estimation framework discussed in 
[18, 20]. First, the linearized equations and the conventional 
solution WLS are presented. Then the biased estimation 
framework is introduced and the proposed integration of the 
hyperbolic localization problem is presented and discussed.  

The non-linear equations (1) can be reorganized into a set of 
linear equations, by squaring and introducing an extra variable 
expressed as function of the source location, [7, 10-12]. 
Specifically, (1) can be rewritten 

 

 𝑑𝑘1 + ‖𝜉1 − 𝜉0‖2 = ‖𝜉𝑘 − 𝜉0‖2 + 𝑛𝑘1 (8) 
 

By squaring both terms of the equality and introducing the new 
variable 𝜌 = ‖𝜉1 − 𝜉0‖2, (8) becomes 

 
      (𝜉𝑘 − 𝜉1)T𝜉0 + 𝑑𝑘1𝜌 =    
 
                     = 1

2
[(𝜉𝑘 − 𝜉1)T(𝜉𝑘 + 𝜉1) − 𝑑𝑘12 ] + 𝑒𝑘  , (9) 

 
where 𝑒𝑘 = 𝑛𝑘1(‖𝜉𝑘 − 𝜉0‖2 + 𝑛𝑘1 2⁄ ) is the noise term. Denoting 
𝜃 = [𝜉0T 𝜌]T and neglecting the second order noise term, (9) can 
be written in a matrix form, 

 
 𝑮𝜃 = 𝒉 + 𝒆, (10) 

 

where 𝑮 = �
𝜉2T − 𝜉1T 𝑑21

⋮ ⋮
𝜉𝑀T − 𝜉1T 𝑑𝑀1

�,   𝒉 = �
(𝜉2 − 𝜉1)T(𝜉2 + 𝜉1) − 𝑑212

⋮
(𝜉𝑀 − 𝜉1)T(𝜉𝑀 + 𝜉1) − 𝑑𝑀12

�, 

and 𝒆 = [𝑛21‖𝜉2 − 𝜉0‖2, … ,𝑛𝑀1‖𝜉𝑀 − 𝜉0‖2 ]T. Problem (10) is 
traditionally solved by minimization of a WLS objective function, 
as in [7]: 

 
 𝜃� =  arg min 

𝜃
(𝑮𝜃 − 𝒉)T𝑸𝑒

−1(𝑮𝜃 − 𝒉) ,  (11) 

 
where 𝑸𝑒 is an weighting matrix. Usually, the measurement noise 
𝑛𝑘1 is small enough compared to the distances ‖𝜉𝑘 − 𝜉0‖2 such 
that 𝑛𝑘12 2⁄  can be neglected and the noise term 𝑒𝑘 can be modeled 
as a zero mean Gaussian random process with the covariance 
matrix 𝑸𝑒 = 𝑩𝑇𝑸𝑛𝑩, where 𝑩 = diag{‖𝜉2 − 𝜉0‖2, … , ‖𝜉𝑀 −
𝜉0‖2}. Note that 𝑩 depends on the unknown location 𝜉0 and thus 
the WLS problem (11) is first solved with 𝑸𝑒 = 𝑸𝑛 to obtain an 
estimate of 𝑩 and then with 𝑸𝑒 = 𝑩�𝑇𝑸𝑛𝑩�  to actually estimate 𝜃. 
This method provides an approximation of the ML estimator for 
source location. However this approximation holds only when the 
errors in the TDOA estimates are small enough. 

It was shown in [18, 21] that for linear systems such as (10) 
there exist biased estimates, which can provide better accuracy 
then the LS solution. The LS solution for linear systems is based 
on minimizing the ℓ2-norm of the data error, 𝒉� − 𝒉, where 
𝒉� = 𝑮𝜃�, rather than minimizing the size of the estimation error, 
𝜃� − 𝜃. To develop an estimation method that is based directly on 
the estimation error, an estimator 𝜃� that minimizes the mean 
squared error (MSE) is desired. The MSE of an estimate 𝜃� of 𝜃 is 
defined, [18], 

 
 MSE�𝜃�� = 𝔼 ��𝜃� − 𝜃�

2
2� = var�𝜃�� + �b�𝜃���

2
2
, (12) 

 
where var�𝜃��= 𝔼 ��𝜃��

2
2� − �𝔼�𝜃���2 is the variance of the 

estimate and b�𝜃�� =  𝔼�𝜃�� −  𝜃 is the bias of the estimate. Since 
the bias generally depends on the unknown parameter 𝜃, we 
cannot chose an estimator to directly minimize the MSE. A 
common approach is to restrict the estimator to be linear and 
unbiased and seek an estimator of this form that minimizes the 
variance var�𝜃��. It is well known that the LS estimator minimizes 
the variance of the estimate 𝜃� among all unbiased linear 
estimates. However this does not imply that the LS estimator has 
the smallest MSE. This motivates the approach of attempting to 



   

reduce the MSE by allowing some nonzero bias. Since the bias 
depends on the unknown 𝜃, one solution is to exploit some a 
priori information on 𝜃. For the localization problem, such 
information can consist in the limits of the surveillance area. With 
this, a biased estimation approach, denoted minimax total MSE 
(MXTM) in [18], can be employed to solve the hyperbolic 
localization problem. Assuming that the estimator is of form 
𝜃� = 𝜞ℎ, for some 3 × (𝑀− 1) matrix 𝜞, and using it together 
with (10) in (12) it can be shown that the MSE of 𝜃� is 

 
 MSE(𝜞) = trace(𝜞𝑸𝑒𝜞T) + 𝜃T(𝑰3 − 𝜞𝑮)T(𝑰3 − 𝜞𝑮)𝜃. (13) 

 
Exploiting the information that limiting the surveillance area 
places a bound on ‖𝜃‖2 , e.g., ‖𝜃‖2 < 𝐿, the estimator can be 
expressed 𝜃� = 𝜞�ℎ, where 

 
 𝜞� =  arg min 

𝜞
max 
‖𝜞ℎ‖2<𝐿

 MSE(𝜞). (14) 

 
Problem (14) seeks to minimize the worst-case MSE across all 

possible estimators of 𝜃, of the form 𝜞ℎ, with the ℓ2-norm 
bounded by 𝐿. To solve the problem, the worst-case MSE is first 
determined. By algebraic manipulations, it can be shown that the 
worst-case MSE is  trace(𝜞𝑸𝑒𝜞T) + 𝐿2𝜆max, where 𝜆max is the 
maximum eigenvalue of (𝑰3 − 𝜞𝑮)T(𝑰3 − 𝜞𝑮). It is known, [15], 
that 𝜆max can be obtained by  
 
                      minimize 𝜆,  (15) 
                      subject to 
                                 𝜆𝑰3 − (𝑰3 − 𝜞𝑮)T(𝑰3 − 𝜞𝑮) ≽ 0, (16) 

 
By introducing (15) in (14), 𝜞 can be estimated  by 
 
                      minimize trace(𝜞𝑸𝑒𝜞T) + 𝐿2𝜆max, (17) 
                      subject to (16), 

 
with variables 𝜞 and 𝜆. The constrained minimization (17) is a 
standard quadratic constrained quadratic problem, [15], that can 
be relaxed to an SDP, 
 
                      minimize 𝛽,  (18) 
                      subject to 

               �𝛽 − 𝐿2𝜆 𝒈𝑇
𝒈 𝑰3

� ≽ 0,   (19) 

                 

 � 𝜆𝑰3 (𝑰3 − 𝜞𝑮)T
𝑰3 − 𝜞𝑮 𝑰3

� ≽ 0,  (20) 

 
with variables 𝛽,𝜞, and 𝜆, where 𝒈 = vec�𝜞𝑸𝑒

1 2⁄ � denotes the 
vector obtained by stacking the columns of  𝜞𝑸𝑒

1 2⁄ .  
Solving for (18)-(20) provides an estimate of 𝜃 = [𝜉0T 𝜌]T. 

However, 𝜌 was introduced into the hyperbolic localization 
problem as an intermediate variable that depends on 𝜉0 through 
𝜌 = ‖𝜉1 − 𝜉0‖2. This needs to be used into the minimization 
problem as an additional constraint. Introducing a new variable 
𝜣 = 𝜃T𝜃, using 𝜃� = 𝜞ℎ, and employing SDR, it can be shown 
that the following two constraints can be introduced into the 
minimization (18)-(20) to account for the relation between 𝜌 and 
𝜉0 and keep the problem convex at the same time: 

 trace(𝑷𝜣) + 𝜉1T𝜉1 − 2𝜉1T𝑹𝜞ℎ = 0, (21) 
 

 � 𝜣 𝜞ℎ
(𝜞ℎ)𝑇 1 � ≽ 0, (22) 

 

where 𝑷 = diag{1, 1,−1}, and  𝑹 = �1 0 0
0 1 0�.  

Thus, the location estimate of 𝜉0 is 𝑹𝜞�ℎ, where 𝜞� is obtained 
by solving the convex optimization problem 
 
                      minimize 𝛽,  (23) 
                      subject to (19), (20), (21), and (22), 

 
with variables 𝛽, 𝜞, and 𝜆. 

The simulation results in Sec VI show that the MXTM method 
offers location estimates of higher accuracy than the previous 
estimation approach, particularly for the case when the source is 
placed outside the convex hull of the sensors. 

V. ℓ1-NORM REGULARIZATION METHOD FOR HYPERBOLIC 
LOCALIZATION 

The methods presented in Sec. III and Sec. IV offer high 
localization accuracy, as demonstrated by the simulation results 
shown in Sec. VI. However they solve a linear approximation of 
the hyperbolic localization problem and are suboptimal. In this 
section we propose a new approach that may offer even higher 
accuracy. This new approach exploits the source sparsity, i.e., the 
spatial sparsity. We propose to convert the localization problem 
to a sparse framework by solving the system 𝟏 = 𝑨𝒛, where 𝟏 is 
a unity vector whose length equals the number 𝑀 − 1 of TDOA 
estimates, 𝜏𝑘1, for 𝑘 = 2, …𝑀, and 𝒛 is a vector whose elements 
are associated with grid points, such that 𝒛𝑗 ≠ 0 if a source is 
present at the grid. The elements 𝑨𝑖𝑗 are values of a function 𝑓 
chosen such that 𝑓��𝜏𝑘1

(𝑗) − 𝜏𝑘1 �� = 1, when the estimated TDOA 
associated with sensor 𝑘, 𝜏𝑘1, equals the true TDOA, 𝜏𝑘1

(𝑗), 
calculated for sensor 𝑘 and grid point 𝑗. Function 𝑓 is chosen as a 
measure of the likelihood that the source is located at the grid 
point 𝑗. Thus, for grid points 𝑗 for which 𝜏𝑘1

(𝑗) ≠ 𝜏𝑘1, function 𝑓 
takes values smaller than 1, such that 𝑓��𝜏𝑘1

(𝑗) − 𝜏𝑘1���𝜏𝑘1
(𝑗)≠𝜏𝑘1

 is 

monotonic decreasing. Estimation of 𝒛 yields then the source 
location. Solving the system 𝟏 = 𝑨𝒛 by traditional LS produces 
poor estimates since the number of unknowns, which equals the 
number of grid points, is usually much larger than the number 
equations, 𝑀 − 1, and thus matrix 𝑨 is a fat matrix. The problem 
can be addressed by exploiting the source sparsity, which means 
that the size of the support of vector 𝒛, or otherwise number of 
non-zero elements, is small relative to the length of 𝒛. 

Thus, the localization problem is formulated as an ℓ1-
regularization problem, i.e., the ℓ1-norm is used to impose a 
sparsity constraint on vector 𝒛, whose support indicates the source 
location: 

 
  minimize 

𝐳
 ‖𝟏 − 𝑨𝒛‖22 + 𝜆‖𝒛‖1 ,  (24) 

 
where 𝜆 is a regularization parameter, balancing the fit of the 
solution 𝒛 to the estimates 𝜏𝑘1 versus sparsity. This formulation is 
a convex optimization problem that can be efficiently solved by 
standard algorithms, [14]. 



   

 
Fig. 2. Localization objective function obtained by ℓ1-
regularization. 

 
Ideally, the sparsity of 𝒛 is enforced by its ℓ0-norm, i.e., the 

number of non-zero elements. However the minimization 
problem with the ℓ0-norm constraint is a NP-hard non-convex 
optimization problem. By using the ℓ1-norm as an approximation 
of the ℓ0-norm, [22], the problem becomes convex. In Fig. 2 the 
estimated values of 𝒛, acting as a localization objective function, 
are plotted at the corresponding space grid points, for a case with 
4 sensors. The peak, which gives the location of the source, 
corresponds to the intersection of the hyperbolas associated with 
the 3 TDOA measurements available in this case. 

A number of methods have been studied in the literature for 
automated choice of the regularization parameter 𝜆 (see [23] and 
the references therein). However, in practice, an optimal value of 
𝜆 is difficult to select by any of these methods, and usually the 
choice of 𝜆 resorts to semi-empirical means, [24].  

Formulating (24) with a denser sampled space has the potential 
of a higher resolution location estimate, but increases the 
complexity of the optimization algorithms. An iterative grid 
refinement approach is adopted to keep the complexity of the 
optimization algorithms in check. Initially, (24) is solved for the 
samples corresponding to a desired range of locations. A refined 
grid is obtained by taking a second set of samples focusing on an 
area that are indicated by the first iteration to include the source 
location. This corresponds to a higher sampling rate of the smaller 
area of interest. The transformation matrix 𝑨 is also recalculated 
to match the refined sample support of the correlation sequences. 
With the refined grid, (24) is solved again and a new source 
location estimate, of higher resolution, is obtained. The grid 
refinement procedure can be repeated to improve the localization 
resolution. However, decreasing the grid spacing effects in high 
inter-column correlation in matrix 𝑨. It is known, [25, 26], that as 
the inter-column correlation increases, the ℓ1-regularization 
solution may become suboptimal, i.e., it does not coincides with 
the solution of the minimization with the ℓ0-norm constraint. This 
sets an empirical lower bound on the localization resolution.  

As demonstrated by the results in Sec. VI, the ℓ1-regularization 
method has the potential of higher accuracy than the other two 
hyperbolic localization methods proposed. However, its 
performance depends on the choice of the regularization 
parameter. Also, a couple of iterations may be needed for grid 
refinement. Additionally, the localization resolution is limited by 
the grid spacing.  

 
Fig. 3. Sensors layout. The source may be located inside or 
outside the sensors convex hull. 
 

VI. NUMERICAL EXAMPLES 
Monte Carlo computer simulations were carried out for a 

number 𝑀 = 8 sensors placed in the plane according to the layout 
in Fig. 3. Two cases were considered: one when the source is 
located inside the convex hull of the sensors and another one 
when the source is placed outside. The TDOA estimation errors 
were drawn from a zero-mean Gaussian distribution, with 
standard deviation 𝜎𝜏, where 𝜎𝜏 was varied between 0 and 
200 ns, i.e., the variance 𝜎𝑛 of the range differences varied 
between 0 and 60 m. For each value of 𝜎𝜏 considered, 100 runs 
were performed. A zero-mean Gaussian function,  

 

 𝑓��𝜏𝑘1
(𝑗) − 𝜏𝑘1�� = exp �− �𝜏𝑘1

(𝑗) − 𝜏𝑘1�
2

2𝜎2� �,  (25) 
 

was used for simulations of (24), with 𝜎 = 500 ns. The plots in 
Fig. 4 and Fig. 5 show the root mean squared error (RMSE) of the 
methods proposed in this paper for a source placed with inside or 
outside of the convex hull of the sensors. The RMSE is plotted 
against the standard deviation of the TDOA estimation error. 

The first remark is that all the three methods proposed in this 
paper outperform, for the cases simulated, the minimax approach 
from [16], known to be already more robust to errors in the 
TDOA estimates than conventional NLS and WLS methods for 
hyperbolic localization. The SDR method presented in Sec. III 
and MXTM presented in Sec. IV show similar accuracies when 
the source is placed inside the convex hull of the sensors, while 
MXTM performs better when the source is outside the convex 
hull. Both methods solve a linearized approximation of the 
hyperbolic localization problem. Finally, the ℓ1-regularization 
outperforms for the simulated cases both the SDR and MXTM 
methods. In simulations, optimal choice of the regularization 
parameter was used. However, in practice a good choice of 𝜆 is 
difficult.  A grid refinement procedure is needed if high resolution 
is desired, e.g., a number of five iterations were used in the 
simulations for a surveillance area of 1000 m by 1000 m, 
stopping at a grid resolution of 0.1 m. 
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Fig. 4. Hyperbolic source localization for the case when the 
source is located inside the convex hull of the sensors. 

VII. CONCLUSIONS 
Three methods for hyperbolic localization were proposed to 

offer high accuracy at different computational costs. The first 
method is based on an SDR approach, the second method, 
MXTM, seeks a biased estimate through a linearized 
formulation of the localization problem, and the third method 
formulates the localization problem as an ℓ1-regularization, by 
exploiting the sparsity of the source location. The proposed 
methods compare favorably with other existing methods, each 
of them having its own advantages. The SDR method has the 
advantage of simplicity and low computational cost. The 
MXTM may perform better than the SDR approach in some 
situations, but at the price of higher computational cost. The 
ℓ1-regularization may outperform the first two methods, but is 
sensitive to the choice of the regularization parameter. 
Moreover, it may require a number of iterations to attain high, 
although limited, localization resolution. 
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