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Abstract – This paper discusses different approaches of FIR filters implementation. It presents 
some basics of digital filters theory, followed by FIR filters design methodology in conventional 
approach and genetic, evolutionary approach. Finally, it describes the FPGA implementation 
methodology, highlighting the pipelined architecture of a multiplier accumulator (MAC). A multiplier-
less filter approach is also considered. 

1. Theoretical background
Digital filters can normally be placed into two categories: Finite Impulse Response (FIR) filters 

and Infinite Impulse Response (IIR) filters. Generally, the IIR filters are realized by recursive structures, 
but such structures may also appear in FIR filters too. IIR filters are components of many practical 
applications because of their better than FIR’s magnitude characteristics. However the use of recursive 
structures is restricted by the stability problem. In applications sensitive to phase distortions, FIR filters 
are preferred because they may be realized with linear-phase response. FIR filters have uses in a number 
of applications including noise cancellation, linear prediction and adaptive signal enhancement. 

The difference equation for the design of an ( )1N + -tap causal FIR filter with constant 
coefficients is expressed by (1), where N  is the order (number of delay elements) [4]. The output [ ]y n
is the discrete convolution of [ ]x n  with the (finite) impulse response [ ]h n  of the filter.
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Figure 1. FIR filter structures: a). canonical form; b). inverted form 

From equation (1), the direct form, transversal structure or canonical form (Figure 1.a) can be 
generated, while the transposed direct form structure or inverted form (Figure 1.b) is obtained by 
applying the Transposition Theorem [10]. 
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The system has a linear phase function (constant group delay: ( ) ( )g d dτ ω ϕ ω ω= − ) if [ ]h n
satisfy the symmetry (3) or antisymmetry (4) condition [4]. Symmetric (folded) FIR topologies for both 
canonical and inverted forms are shown in Figure 2. 

[ ] [ ], 0,1,...,h N n h n n N− = = (3) 

[ ] [ ], 0,1,...,h N n h n n N− = − = (4) 

Figure 2. Symmetric FIR filter structures: a). canonical form; b). inverted form 

The input [ ]x n  and the output [ ]y n  of a causal IIR filter satisfy the thN -order linear constant
coefficients difference equation of the form (5) [4]. Often the coefficient 0a  is assumed to be 1 and we 
can rewrite the difference equation as (6). 

[ ] [ ]
0 0

N M

k k
k k

a y n k b x n k
= =

⋅ − = ⋅ −∑ ∑ (5) 

[ ] [ ] [ ]
0 1

M N

k k
k k

y n b x n k a y n k
= =

= ⋅ − − ⋅ −∑ ∑ (6) 

A filter in the direct form is the straightforward implementation of the above difference 
equation. The system transfer function has the form (7). If we factor the polynomials by finding their 
roots (roots of numerator polynomial kc : zeros; roots of the denominator polynomial kd : poles) we can 
rewrite the system transfer function in the cascade form (8). Combining pairs of real factors and 
complex conjugate pairs into second-order stages (so called biquads), yields the equation (9). 
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 One advantage of the cascade form over the direct form is that a small change of a coefficient 
(e.g. quantization) moves only the pair of poles (or zeros) of the corresponding stage and not all others 
[4]. Furthermore, the amount of displacement is less than for the overall higher-order direct form filter. 
Another advantage is that we directly can check if the filter is stable by verifying the 2ka  coefficients 
only. For a complex conjugate pair of poles kd , *

kd  we get the equation (10). 

  { } 21 2 1 2
1 21 1 2 Rek k k ka z a z d z d z− − − −+ ⋅ + ⋅ = − ⋅ ⋅ + ⋅  (10) 

 In the IIR filters design a stability problem arises, which is expressed in the following. Let the 
polynomial ( )D z  from the expression ( )1 D z  be with positive exponents of z ; the absolute value of 
this expression converges if and only if ( )D z  has all the roots inside the unit circle 1z =  [8]. The 
recursive filter with the transfer function defined in (8) is stable if all the poles of ( )H z  are situated 
inside of the circle with unit radix from the z  plane. This condition can be expressed like (11). 
  ( ) 0 1, 0,..., 1k kD z z k N= ⇒ ≤ ∀ = −  (11) 
 If the absolute value of every pole is less than unity than the filter is strictly stable. If there is at 
least one pole outside the unit circle from the z  plane, than the filter is unstable. The Bairstow method, 
recently implemented in C programming language [8], can be successfully used in finding the roots of 
the denominator of the transfer function ( )H z . 
 2. FIR filters design: constraints and solutions 
 Modern digital FIR filters are designed using computer-aided design engineering tools. The most 
used tool is the Filter Design & Analysis Tool from Matlab Signal Processing toolbox. The filter is 
applied to a specific application with a specific magnitude and group delay specification. Because in 
Matlab codes is difficult to model the specified group delay response, usually there are two stages: first, 
design a filter that meets the specification in magnitude response and should be minimum-phase; than, 
consider trade-offs between the group delay specification and implementation costs [5]. 
 Most often, we already know the transfer function (i.e., magnitude of the frequency response) of 
the desired filter. Such a lowpass specification consists of the passband [0... ]pass passW F= , the transition 
band [ ... ]pass stopF F  and the stopband [ ... 2]stop stop sW F F=  specification, where the sampling frequency 
is assumed to be sF . To compute the filter coefficients, we may apply one of the methods implemented 
in Matlab (i.e. the direct frequency method or equiripple method) [6].  
 If we want to implement the designed filter in ASIC or FPGA technologies than scaling and 
quantization has to be applied to calculated coefficients, translating them from floating point values to 
fixed-point. So, if we like to calculate expression (12) using integer arithmetic, where kb  is the 
equivalent of kw  from the equation (1) and Figure 1 and should have fractional value (e.g. 0.125kb = ), 
we must scale it up to get an useful integer before the multiplication and scale it down again either 
directly after multiplication or after the accumulation. Let Q  denote this scaling factor and for 
simplicity, let’s choose a power of 2 (e.g. 152Q = ) which can be applied using bitwise shift. Therefore 
the finest fractional resolution (i.e., quantization step) is 1Q− . Now the expression has the form (13) or 
(14). The second one produces definitely less round-off noise ( 2

nσ  instead of ( ) 21 nM σ+ ⋅ ) but it needs a 
wider accumulator (double-length or more) [4]. 
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 The Discrete Fourier Transform (DFT) establishes a direct connection between the frequency 
response and the time domain behaviour. Since the frequency domain is the domain of filter definition, 
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the DFT can be used to calculate a set of FIR coefficients which produce a filter that approximates the 
frequency response of the target filter. A filter designed in this manner is called a direct FIR filter, which 
is defined by (15). In order to smooth the magnitude frequency response, a data windowing may be 
applied to the FIR, for instance a Kaiser window [5]. 
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 A typical filter specification not only includes the specification of passband pF  and stopband sF  
frequencies and ideal gains, but also the allowed deviation (or ripple) from the desired transfer function. 
The transition band is most often assumed to be arbitrary in terms of ripple. A special class of FIR filter 
that is particularly effective in meeting such specifications is called the equiripple FIR. An equiripple 
design protocol minimizes the maximal deviations (ripple error) from the ideal transfer function. The 
equiripple or minimum-maximum (minimax) algorithm is normally implemented using Parks-McClellan 
iterative method. The length of the polynomial, and therefore the filter, can be estimated for a lowpass 
with (16), where 2passA  is the passband and stopA  is the stopband ripple [6]. 

  
Figure 3. FIR filter analysis with FDAtool 

 Figure 3 illustrates the design by the equiripple method using the Matlab FDA tool for an 
quantized direct form symmetric FIR filter with minimum order and the specifications: 4000sF Hz= , 

800passF Hz= , 1200stopF Hz= , 2passA dB= , 35stopA dB= . The resulting filter has the order 10 and the 
coefficients are: 0.01187133789, -0.05444335938, -0.1121520996, 0.01327514648, 0.313293457, 
0.4811096191, 0.313293457, 0.01327514648, -0.1121520996, -0.05444335938, 0.01187133789. The 
filter structure can be also automatically generated. 

a). 

b). c). 

d). e). 
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 3. Genetic representation of FIR filters 
 In the design of the digital filters, a special approach is the genetic one [2]. Usually, a genetic 
algorithm is only applied to optimize the coefficients of a digital filter obtained in a conventional 
manner. A completely different design stile consists in having the whole design performed by an 
evolutionary algorithm. Evolutionary algorithms are a broad class of optimization methods, built on the 
key concept of Darwin evolution in biology. A digital filter can be represented as a sequence of 
elementary operations, which can be encoded to be handled by a genetic algorithm. The conventional 
approach, illustrated by the dashed line in Figure 4a consists in the design of an ideal specified filter 
(with infinite precision coefficients) by obtaining an approximation with finite word arithmetic. The 
genetic algorithm is used to produce from filter specifications directly the synthesizable RTL (register 
transfer logic) code, which is translated into structural and physical domains by means of other tools. 
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 A description of digital filters can derived from their frequency response in the z-domain. The 
frequency response of a finite impulse response (FIR) digital filter is given by (17) and the canonical 
direct form of the filter is shown in Figure 1a. To save area and to reduce power consumption, generic 
multiplier blocks are often replaced with shifters and adders. As an example, multiplication by 13 can be 
implemented with two shifts and two additions, as illustrated in Figure 4b, where the block “<< n” 
means “left shift by n positions”. The canonical signed digit (CSD) representation assigns a separate sign 
to each digit: 0 , 1 and 1 (= –1). Its goal is to minimize the number of non-zero digits: by encoding the 
filter coefficients with CSD, the filter output can be computed using a reduced amount of hardware, 
since multiplications by zero are simply not implemented. As an example, consider the multiplication by 
15: since ( )3 2 1 0

215 2 2 2 2 001111= + + + = , this operation in binary arithmetic would require three 

shifts and three additions; while using CSD we can write ( )4 0
2

15 2 2 010001= − = , and we implement 

the same operation using only one shifter and one subtractor (Figure 4c). 

 
Figure 4. a). Digital design methodology; b). Multiplication by 13 implemented with shifters and adders; 

c). Multiplication by 15 implemented with one shifter and one adder 

Name Code Op 1 Op 2 Description 
Input I not used not used Copy input:  iy x=  

Delay D 1n  not used Store value:  1
1

i i ny y z−−=  

Left shift L 1n  p  Multiply by 2 p :   1
12 p

i i ny y z−−=  

Right shift R 1n  p  Divide by 2 p :  1
12 p

i i ny y z− −
−=  

Adder A 1n  2n  Sum:  ( )1 2
1

i i n i ny y y z−− −= +  

Subtractor S 1n  2n  Difference:  ( )1 2
1

i i n i ny y y z−− −= −  

Complement C 1n  not used Multiply by 1− :  1
1

i i ny y z−−= −  

Table 1. Primitives of the genetic algorithm 
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 Starting from these considerations, a digital filter can be described using a very small number of 
elementary operations. The primitives selected for digital filters are listed in Table 1 [2]. Each 
elementary operation is encoded by its own code (one character) and by two integer numbers, which 
represent the relative offset (calculated from the current position) of the two operands. When all the 
offsets are positive (i.e. each block can receive data from previous blocks only), no feedback loop occurs 
and the resulting structure is a FIR filter. All primitives include a delay 1z− , to avoid possible problems 
due to timing violations during the synthesis process. Since the primitive operators requiring an adder 
block are more expensive in terms of power dissipation, a relative weight factor may be assigned to sum, 
deference and complement. As an example, the following sequence is made of 6 primitives (6 genes): (I 
0 2) (D 1 3) (L 2 2) (A 2 1) (D 1 0) (S 1 5). It corresponds to the schematic diagram shown in Figure 5, 
and it is interpreted as in (18). The last value is the output of the filter. By merging the equations (18), 
we obtain the transfer function (19). 
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0 2 0 4 3

1 1 1
1 0 3 1 2 5 4 0

2y x y y z y y z

y y z y y y z y y y y z

− −

− − −

= = =

= = + = = −
 (18) 

  ( ) 4 15H z y x z z− −= = −  (19) 

 
Figure 5. Schematic diagram corresponding to a sequence of 6 primitives 

 Such a representation has the same essence as a program in a simple programming language. 
Therefore, digital filter design can be automated through genetic programming. Fine granularity of 
primitives leads to a simple genetic encoding, and allows the evolutionary algorithm to perform a better 
search within the design space [2]. 
 5. On the FPGA implementation of FIR filters 
 Most digital signal processing done today uses a specialized microprocessor, called a digital 
signal processor, capable of very high speed multiplication. This traditional method of signal processing 
is bandwidth limited. There is a fixed number of operations that the processor can perform on a sample 
before the next sample arrives. This limits either the applications that can be performed on a signal or it 
limits the maximum frequency signal that the application can handle. This limitation stems from the 
sequential nature of processors. DSPs using a single core can only perform one operation on one piece of 
data at a time. They can not perform operations in parallel. For example, in a 64 tap filter they can only 
calculate the value of one tap at a time, while the other 63 taps wait. Nor can they perform pipelined 
applications. In an application calling for a signal to be filtered and then correlated, the processor must 
first filter, then stop filtering, then correlate, then stop correlating, then filter, etc. If the applications 
could be pipelined, a filtered sample could be correlated while a new sample is simultaneously filtered. 
Digital Signal Processor manufacturers have tried to get around this problem by cramming additional 
processors on a chip. This helps, but it still remains true that in a digital signal processor most of the 
application is idle most of the time [1]. 

 
Figure 6. Multiplier-less transversal FIR filter 

 FPGA-based digital signal processing is based on hardware logic and does not suffer from any 
of the software based processor performance problems. FPGAs allow applications to run in parallel so 
that a 128 tap filter can run as fast as a 10 tap filter. Applications can also be pipelined in an FPGA, so 

<< 2 D D x    + 
 -    + 

 + 
y 

y5 y4 y3 y2 y1 y0 
Input Delay Left shift Subtractor Adder Delay 
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that filtering, correlation, and many other applications can all run simultaneously. In an FPGA, most of 
an application is working most of the time. An FPGA can offer 10 to 1000 times the performance of the 
most advanced digital signal processor at similar or even lower costs [1], [7]. 
 Conventional transversal filters require a multiplying element for each tap. Multiplication is a 
resource and time consuming process. Of course, one approach is to use a pipelined architecture of a 
multiplier accumulator [9], [7] (MAC), equivalent to a transversal filter. But also, there is another fast 
way by carrying out the multiplication in the logarithmic domain to save time. The filter architecture is 
shown in Figure 6 and it is based on the fact that any binary number N  can be written as in (20) and for 
0 1x≤ <  the approximations from (21) are available [3]. 
  ( )2 1kN x= ⋅ +  (20) 
  ( )2 2log log 1N k x k x= + + ≈ +  (21) 

 
Figure 7. Pipelined FIR – MAC structure 
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 The pipelined architecture of a complex multiplier accumulator, which can be used in transversal 
filters implementation is presented in Figure 7 [9]. It contains one input register Rin, one output register 
Rout and two pipeline registers R1, R2. The multiplication block M calculates the partial products pp1 and 
pp2 and the adder/subtractor block AS computes the final product p (22). The final product is 
accumulated using the accumulator block A. At each active front clock, the blocks M, AS and A do their 
functions and the results are stored in the pipeline R1 and R2 and output Rout registers and the next filter 
input samples are prepared in the input register Rin. The structure presented is sequential, so the samples 
of filter’s input x and coefficients w have to be synchronized. Also, a clear signal to reset the 
accumulator is needed. For controlling this, a finite state machine is most adequate.  
 6. Conclusions 
 The FIR filters implementation may be approached mainly by two ways: the conventional one 
ant the evolutionary, genetic one. In the conventional approach, the filter’s coefficients have to be 
calculated from the filter specifications, while in the evolutionary approach synthesizable RTL code is 
directly produced from the filter specifications using a genetic algorithm. For the conventional approach 
there are developed computer analysis tools like Matlab Filter Design and Analysis tool. Trough genetic 
programming, the digital filter design can be automated. 
 FPGA implementations of FIR filters run in parallel, which is done faster than the software 
implementations. Pipeline registers may be introduced in FPGA implementations and in this manner the 
time needed to calculate the value of one sample of the filter’s output is reduced to the time period of the 
slowest register and not to the sum of time periods of all registers. 
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