
FIR FILTERS IMPLEMENTATION APPROACHES
Ciprian Romeo Comşa1, Georgian Grigore1

Abstract – This paper discusses different approaches of FIR filters implementation. It presents
some basics of digital filters theory, followed by FIR filters design methodology in conventional
approach and genetic, evolutionary approach. Finally, it describes the FPGA implementation
methodology, highlighting the pipelined architecture of a multiplier accumulator (MAC). A multiplier-
less filter approach is also considered.

1. Theoretical background
Digital filters can normally be placed into two categories: Finite Impulse Response (FIR) filters

and Infinite Impulse Response (IIR) filters. Generally, the IIR filters are realized by recursive structures,
but such structures may also appear in FIR filters too. IIR filters are components of many practical
applications because of their better than FIR’s magnitude characteristics. However the use of recursive
structures is restricted by the stability problem. In applications sensitive to phase distortions, FIR filters
are preferred because they may be realized with linear-phase response. FIR filters have uses in a number
of applications including noise cancellation, linear prediction and adaptive signal enhancement.

The difference equation for the design of an ()1N + -tap causal FIR filter with constant
coefficients is expressed by (1), where N is the order (number of delay elements) [4]. The output []y n
is the discrete convolution of []x n with the (finite) impulse response []h n of the filter.

[] []
0

N

k
k

y n w x n k
=

= ⋅ −∑ (1)

[] , 0,1,...,
0, otherwise
kw k N

h k
=

= 


(2)

Figure 1. FIR filter structures: a). canonical form; b). inverted form

From equation (1), the direct form, transversal structure or canonical form (Figure 1.a) can be
generated, while the transposed direct form structure or inverted form (Figure 1.b) is obtained by
applying the Transposition Theorem [10].

1 Faculty of Electronics and Telecommunications, Telecommunications Department, Bd. Carol I No. 11 Iaşi
700506, e-mail: ccomsa@etc.tuiasi.ro, ggrigore@etc.tuiasi.ro

Page 1

The system has a linear phase function (constant group delay: () ()g d dτ ω ϕ ω ω= −) if []h n
satisfy the symmetry (3) or antisymmetry (4) condition [4]. Symmetric (folded) FIR topologies for both
canonical and inverted forms are shown in Figure 2.

[] [], 0,1,...,h N n h n n N− = = (3)

[] [], 0,1,...,h N n h n n N− = − = (4)

Figure 2. Symmetric FIR filter structures: a). canonical form; b). inverted form

The input []x n and the output []y n of a causal IIR filter satisfy the thN -order linear constant
coefficients difference equation of the form (5) [4]. Often the coefficient 0a is assumed to be 1 and we
can rewrite the difference equation as (6).

[] []
0 0

N M

k k
k k

a y n k b x n k
= =

⋅ − = ⋅ −∑ ∑ (5)

[] [] []
0 1

M N

k k
k k

y n b x n k a y n k
= =

= ⋅ − − ⋅ −∑ ∑ (6)

A filter in the direct form is the straightforward implementation of the above difference
equation. The system transfer function has the form (7). If we factor the polynomials by finding their
roots (roots of numerator polynomial kc : zeros; roots of the denominator polynomial kd : poles) we can
rewrite the system transfer function in the cascade form (8). Combining pairs of real factors and
complex conjugate pairs into second-order stages (so called biquads), yields the equation (9).

() ()
()

1

0

1

1
1

M

k
k

N

k
k

b z
B z

H z
A z

a z

−

=

−

=

⋅
= =

+ ⋅

∑

∑
(7)

()
()

()

()

()

()
()

1

1 1
0 0 0

1

1 1

1

1

M M
M

k k M
k k
N N N

N
k k

k k

c z z z c
C zzH z b b b
D zzd z z z d

− −
−

= =
−

− −

= =

− ⋅ ⋅ −
= ⋅ = ⋅ = ⋅ ⋅

− ⋅ ⋅ −

∏ ∏

∏ ∏
(8)

Page 2

 ()
1 2

0 1 2
0 1 2

1 1 21

biquadN
k k k

k k k

b b z b zH z b
a z a z

− −

− −
=

+ ⋅ + ⋅
= ⋅

+ ⋅ + ⋅
∏ (9)

 One advantage of the cascade form over the direct form is that a small change of a coefficient
(e.g. quantization) moves only the pair of poles (or zeros) of the corresponding stage and not all others
[4]. Furthermore, the amount of displacement is less than for the overall higher-order direct form filter.
Another advantage is that we directly can check if the filter is stable by verifying the 2ka coefficients
only. For a complex conjugate pair of poles kd , *

kd we get the equation (10).

 { } 21 2 1 2
1 21 1 2 Rek k k ka z a z d z d z− − − −+ ⋅ + ⋅ = − ⋅ ⋅ + ⋅ (10)

 In the IIR filters design a stability problem arises, which is expressed in the following. Let the
polynomial ()D z from the expression ()1 D z be with positive exponents of z ; the absolute value of
this expression converges if and only if ()D z has all the roots inside the unit circle 1z = [8]. The
recursive filter with the transfer function defined in (8) is stable if all the poles of ()H z are situated
inside of the circle with unit radix from the z plane. This condition can be expressed like (11).
 () 0 1, 0,..., 1k kD z z k N= ⇒ ≤ ∀ = − (11)
 If the absolute value of every pole is less than unity than the filter is strictly stable. If there is at
least one pole outside the unit circle from the z plane, than the filter is unstable. The Bairstow method,
recently implemented in C programming language [8], can be successfully used in finding the roots of
the denominator of the transfer function ()H z .
 2. FIR filters design: constraints and solutions
 Modern digital FIR filters are designed using computer-aided design engineering tools. The most
used tool is the Filter Design & Analysis Tool from Matlab Signal Processing toolbox. The filter is
applied to a specific application with a specific magnitude and group delay specification. Because in
Matlab codes is difficult to model the specified group delay response, usually there are two stages: first,
design a filter that meets the specification in magnitude response and should be minimum-phase; than,
consider trade-offs between the group delay specification and implementation costs [5].
 Most often, we already know the transfer function (i.e., magnitude of the frequency response) of
the desired filter. Such a lowpass specification consists of the passband [0...]pass passW F= , the transition
band [...]pass stopF F and the stopband [... 2]stop stop sW F F= specification, where the sampling frequency
is assumed to be sF . To compute the filter coefficients, we may apply one of the methods implemented
in Matlab (i.e. the direct frequency method or equiripple method) [6].
 If we want to implement the designed filter in ASIC or FPGA technologies than scaling and
quantization has to be applied to calculated coefficients, translating them from floating point values to
fixed-point. So, if we like to calculate expression (12) using integer arithmetic, where kb is the
equivalent of kw from the equation (1) and Figure 1 and should have fractional value (e.g. 0.125kb =),
we must scale it up to get an useful integer before the multiplication and scale it down again either
directly after multiplication or after the accumulation. Let Q denote this scaling factor and for
simplicity, let’s choose a power of 2 (e.g. 152Q =) which can be applied using bitwise shift. Therefore
the finest fractional resolution (i.e., quantization step) is 1Q− . Now the expression has the form (13) or
(14). The second one produces definitely less round-off noise (2

nσ instead of () 21 nM σ+ ⋅) but it needs a
wider accumulator (double-length or more) [4].

 []
0

M

k
k

b x n k
=

⋅ −∑ (12)

 []()1

0

M

k
k

Q b Q x n k−

=
⋅ ⋅ ⋅ −∑ (13)

 []1

0

M

k
k

Q b Q x n k−

=
⋅ ⋅ ⋅ −∑ (14)

 The Discrete Fourier Transform (DFT) establishes a direct connection between the frequency
response and the time domain behaviour. Since the frequency domain is the domain of filter definition,

Page 3

the DFT can be used to calculate a set of FIR coefficients which produce a filter that approximates the
frequency response of the target filter. A filter designed in this manner is called a direct FIR filter, which
is defined by (15). In order to smooth the magnitude frequency response, a data windowing may be
applied to the FIR, for instance a Kaiser window [5].
 [] []() [] 2IDFT j kn L

k
f n F k F k e π= = ⋅∑ (15)

()
()

1010 log 2
1

2.324 2
stop pass

stop pass

A A
L

F Fπ

− ⋅ ⋅
= +

⋅ ⋅ −
 (16)

 A typical filter specification not only includes the specification of passband pF and stopband sF
frequencies and ideal gains, but also the allowed deviation (or ripple) from the desired transfer function.
The transition band is most often assumed to be arbitrary in terms of ripple. A special class of FIR filter
that is particularly effective in meeting such specifications is called the equiripple FIR. An equiripple
design protocol minimizes the maximal deviations (ripple error) from the ideal transfer function. The
equiripple or minimum-maximum (minimax) algorithm is normally implemented using Parks-McClellan
iterative method. The length of the polynomial, and therefore the filter, can be estimated for a lowpass
with (16), where 2passA is the passband and stopA is the stopband ripple [6].

Figure 3. FIR filter analysis with FDAtool

 Figure 3 illustrates the design by the equiripple method using the Matlab FDA tool for an
quantized direct form symmetric FIR filter with minimum order and the specifications: 4000sF Hz= ,

800passF Hz= , 1200stopF Hz= , 2passA dB= , 35stopA dB= . The resulting filter has the order 10 and the
coefficients are: 0.01187133789, -0.05444335938, -0.1121520996, 0.01327514648, 0.313293457,
0.4811096191, 0.313293457, 0.01327514648, -0.1121520996, -0.05444335938, 0.01187133789. The
filter structure can be also automatically generated.

a).

b). c).

d). e).

Page 4

 3. Genetic representation of FIR filters
 In the design of the digital filters, a special approach is the genetic one [2]. Usually, a genetic
algorithm is only applied to optimize the coefficients of a digital filter obtained in a conventional
manner. A completely different design stile consists in having the whole design performed by an
evolutionary algorithm. Evolutionary algorithms are a broad class of optimization methods, built on the
key concept of Darwin evolution in biology. A digital filter can be represented as a sequence of
elementary operations, which can be encoded to be handled by a genetic algorithm. The conventional
approach, illustrated by the dashed line in Figure 4a consists in the design of an ideal specified filter
(with infinite precision coefficients) by obtaining an approximation with finite word arithmetic. The
genetic algorithm is used to produce from filter specifications directly the synthesizable RTL (register
transfer logic) code, which is translated into structural and physical domains by means of other tools.

 ()
0

M
k

k
k

H z b z−
=

= ⋅∑ (17)

 A description of digital filters can derived from their frequency response in the z-domain. The
frequency response of a finite impulse response (FIR) digital filter is given by (17) and the canonical
direct form of the filter is shown in Figure 1a. To save area and to reduce power consumption, generic
multiplier blocks are often replaced with shifters and adders. As an example, multiplication by 13 can be
implemented with two shifts and two additions, as illustrated in Figure 4b, where the block “<< n”
means “left shift by n positions”. The canonical signed digit (CSD) representation assigns a separate sign
to each digit: 0 , 1 and 1 (= –1). Its goal is to minimize the number of non-zero digits: by encoding the
filter coefficients with CSD, the filter output can be computed using a reduced amount of hardware,
since multiplications by zero are simply not implemented. As an example, consider the multiplication by
15: since ()3 2 1 0

215 2 2 2 2 001111= + + + = , this operation in binary arithmetic would require three

shifts and three additions; while using CSD we can write ()4 0
2

15 2 2 010001= − = , and we implement

the same operation using only one shifter and one subtractor (Figure 4c).

Figure 4. a). Digital design methodology; b). Multiplication by 13 implemented with shifters and adders;

c). Multiplication by 15 implemented with one shifter and one adder

Name Code Op 1 Op 2 Description
Input I not used not used Copy input: iy x=

Delay D 1n not used Store value: 1
1

i i ny y z−−=

Left shift L 1n p Multiply by 2 p : 1
12 p

i i ny y z−−=

Right shift R 1n p Divide by 2 p : 1
12 p

i i ny y z− −
−=

Adder A 1n 2n Sum: ()1 2
1

i i n i ny y y z−− −= +

Subtractor S 1n 2n Difference: ()1 2
1

i i n i ny y y z−− −= −

Complement C 1n not used Multiply by 1− : 1
1

i i ny y z−−= −

Table 1. Primitives of the genetic algorithm

<< 2

<< 3

x y

<< 4
x y

b).

c).

Filter
Specifications

RTL
(VHDL)

Schematic

Layout

Coefficients

Conventional
approach

Genetic
approach

Logic synthesis

Place & route

Behavioral
domain

Structural
domain

Physical
domain

Standard
design

methodology

a).

Page 5

 Starting from these considerations, a digital filter can be described using a very small number of
elementary operations. The primitives selected for digital filters are listed in Table 1 [2]. Each
elementary operation is encoded by its own code (one character) and by two integer numbers, which
represent the relative offset (calculated from the current position) of the two operands. When all the
offsets are positive (i.e. each block can receive data from previous blocks only), no feedback loop occurs
and the resulting structure is a FIR filter. All primitives include a delay 1z− , to avoid possible problems
due to timing violations during the synthesis process. Since the primitive operators requiring an adder
block are more expensive in terms of power dissipation, a relative weight factor may be assigned to sum,
deference and complement. As an example, the following sequence is made of 6 primitives (6 genes): (I
0 2) (D 1 3) (L 2 2) (A 2 1) (D 1 0) (S 1 5). It corresponds to the schematic diagram shown in Figure 5,
and it is interpreted as in (18). The last value is the output of the filter. By merging the equations (18),
we obtain the transfer function (19).

() ()

2 1 1
0 2 0 4 3

1 1 1
1 0 3 1 2 5 4 0

2y x y y z y y z

y y z y y y z y y y y z

− −

− − −

= = =

= = + = = −
 (18)

 () 4 15H z y x z z− −= = − (19)

Figure 5. Schematic diagram corresponding to a sequence of 6 primitives

 Such a representation has the same essence as a program in a simple programming language.
Therefore, digital filter design can be automated through genetic programming. Fine granularity of
primitives leads to a simple genetic encoding, and allows the evolutionary algorithm to perform a better
search within the design space [2].
 5. On the FPGA implementation of FIR filters
 Most digital signal processing done today uses a specialized microprocessor, called a digital
signal processor, capable of very high speed multiplication. This traditional method of signal processing
is bandwidth limited. There is a fixed number of operations that the processor can perform on a sample
before the next sample arrives. This limits either the applications that can be performed on a signal or it
limits the maximum frequency signal that the application can handle. This limitation stems from the
sequential nature of processors. DSPs using a single core can only perform one operation on one piece of
data at a time. They can not perform operations in parallel. For example, in a 64 tap filter they can only
calculate the value of one tap at a time, while the other 63 taps wait. Nor can they perform pipelined
applications. In an application calling for a signal to be filtered and then correlated, the processor must
first filter, then stop filtering, then correlate, then stop correlating, then filter, etc. If the applications
could be pipelined, a filtered sample could be correlated while a new sample is simultaneously filtered.
Digital Signal Processor manufacturers have tried to get around this problem by cramming additional
processors on a chip. This helps, but it still remains true that in a digital signal processor most of the
application is idle most of the time [1].

Figure 6. Multiplier-less transversal FIR filter

 FPGA-based digital signal processing is based on hardware logic and does not suffer from any
of the software based processor performance problems. FPGAs allow applications to run in parallel so
that a 128 tap filter can run as fast as a 10 tap filter. Applications can also be pipelined in an FPGA, so

<< 2 D D x +
 - +

 +
y

y5 y4 y3 y2 y1 y0
Input Delay Left shift Subtractor Adder Delay

Page 6

that filtering, correlation, and many other applications can all run simultaneously. In an FPGA, most of
an application is working most of the time. An FPGA can offer 10 to 1000 times the performance of the
most advanced digital signal processor at similar or even lower costs [1], [7].
 Conventional transversal filters require a multiplying element for each tap. Multiplication is a
resource and time consuming process. Of course, one approach is to use a pipelined architecture of a
multiplier accumulator [9], [7] (MAC), equivalent to a transversal filter. But also, there is another fast
way by carrying out the multiplication in the logarithmic domain to save time. The filter architecture is
shown in Figure 6 and it is based on the fact that any binary number N can be written as in (20) and for
0 1x≤ < the approximations from (21) are available [3].
 ()2 1kN x= ⋅ + (20)
 ()2 2log log 1N k x k x= + + ≈ + (21)

Figure 7. Pipelined FIR – MAC structure

1

1 1 2 k

2 1 2 k

2

re re re

im re im re re re re re re

re im im im im im im im im

im im re

pp x w
pp x w p pp pp y y p
pp x w p pp pp y y p
pp x w

= ⋅
= ⋅ = − = +
= ⋅ = + = +
= ⋅

 (22)

 The pipelined architecture of a complex multiplier accumulator, which can be used in transversal
filters implementation is presented in Figure 7 [9]. It contains one input register Rin, one output register
Rout and two pipeline registers R1, R2. The multiplication block M calculates the partial products pp1 and
pp2 and the adder/subtractor block AS computes the final product p (22). The final product is
accumulated using the accumulator block A. At each active front clock, the blocks M, AS and A do their
functions and the results are stored in the pipeline R1 and R2 and output Rout registers and the next filter
input samples are prepared in the input register Rin. The structure presented is sequential, so the samples
of filter’s input x and coefficients w have to be synchronized. Also, a clear signal to reset the
accumulator is needed. For controlling this, a finite state machine is most adequate.
 6. Conclusions
 The FIR filters implementation may be approached mainly by two ways: the conventional one
ant the evolutionary, genetic one. In the conventional approach, the filter’s coefficients have to be
calculated from the filter specifications, while in the evolutionary approach synthesizable RTL code is
directly produced from the filter specifications using a genetic algorithm. For the conventional approach
there are developed computer analysis tools like Matlab Filter Design and Analysis tool. Trough genetic
programming, the digital filter design can be automated.
 FPGA implementations of FIR filters run in parallel, which is done faster than the software
implementations. Pipeline registers may be introduced in FPGA implementations and in this manner the
time needed to calculate the value of one sample of the filter’s output is reduced to the time period of the
slowest register and not to the sum of time periods of all registers.

 References

[1] Allaire B, Fischer B., “Block Adaptive Filter”, Xilinx Application Note XAPP 055 1997
[2] Azzini A., Bettoni M., Liberali V., Rossi R., Tettamanzi A., “Evolutionary Design and FPGA

Implementation of Digital Filters”, University of Milano, 2003
[3] El-Eraki S.M., Batchelor J.C., Lee P., Langley R.J., “A Multiplier-less CMA Adaptive

Equaliser”, University of Kent at Canterbury
[4] Feldbauer Ch., “Digital Filter Implementation”, http://spsc.inw.tugraz.at, 2002
[5] Guo Zhan, “Digital Filter Design: A Practical Prototyping Approach”, Lund University, 2003
[6] Mayer-Baese U., “Digital Signal Processing with FPGA”, Springer Verlag Berlin, 2001

R i
n

xre

xim

wre

wim

x
 M

x

R 1

pp1re

pp1im

pp2re

pp2im +
 A

S
 -

R 2

pre

pim +
 A

+

R o
ut

ykre

ykim

yre

yim

Accumulator

Clock

Page 7

[7] Parhi K.K., “Pipelining in Algorithms with Quantizer Loops”, IEEE Transactions on Circuits
and Systems, vol. 38, No. 7, July 1991

[8] Rusu, I., „O Nouă Metodă de Determinare a Stabilităţii Filtrelor Numerice Recursive”,
Telecomunicaţii, Nr.1/2001

[9] Stoica L., “A VHDL Pipeline Control Unit Model Approach of a Pipelined Multiplier
Accumulator”, Buletinul Ştiinţific al Univ. „Politehnica” din Timişoara, Transactions on
Electronics and Telecommunications, Tom 47(61), Fascicula 1-2, 2002

[10] Valls J., Peiro M., Sansaloni T., Boemo E., “A Study About FPGA-Based Digital Filtres”

Page 8

	Buletinul Ştiinţific al Universităţii Tehnice „Gh. Asachi” Iaşi
	Tom XLIX (LIII), Fascicola 3-4/2003
	FIR FILTERS IMPLEMENTATION APPROACHES
	1. Theoretical background
	Figure 1. FIR filter structures: a). canonical form; b). inverted form
	Figure 2. Symmetric FIR filter structures: a). canonical form; b). inverted form
	2. FIR filters design: constraints and solutions
	Figure 3. FIR filter analysis with FDAtool
	3. Genetic representation of FIR filters
	Figure 4. a). Digital design methodology; b). Multiplication by 13 implemented with shifters and adders; c). Multiplication by 15 implemented with one shifter and one adder
	Table 1. Primitives of the genetic algorithm
	Figure 5. Schematic diagram corresponding to a sequence of 6 primitives
	5. On the FPGA implementation of FIR filters
	Figure 6. Multiplier-less transversal FIR filter
	Figure 7. Pipelined FIR – MAC structure
	6. Conclusions
	References
	ABORDĂRI ÎN IMPLEMENTAREA FILTRELOR FIR
	Figure1. FIR filter structures: a). canonical form; b). inverted form
	Figure 2. Symmetric FIR filter structures: a). canonical form; b). inverted form
	Figure3. FIR filter analysis with FDAtool
	Figure 4. a). Digital design methodology; b). Multiplication by 13 implemented with shifters and adders; c). Multiplication by 15 implemented with one shifter and one adder
	Figure 5. Schematic diagram corresponding to a sequence of 6 primitives
	Figure 6. Multiplier-less transversal FIR filter
	Figure 7. Pipelined FIR – MAC structure

